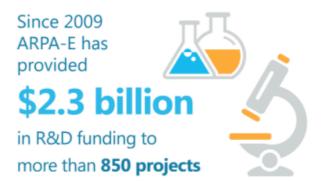

Clean energy investments: Lessons from the 2009 Recovery Act

&


Energy storage requirements for deep renewable energy penetration

> Global Energy Dialogues 23 June 2020

- 2005 ARPA-E recommended in "Rising Above the Gathering Storm"
- ARPA-E was authorized (allows a program to be established) in 2007
- Recovery Act of 2009, which provided \$400 M/2 years.
- First Budget request in 2011 was for \$ 300M

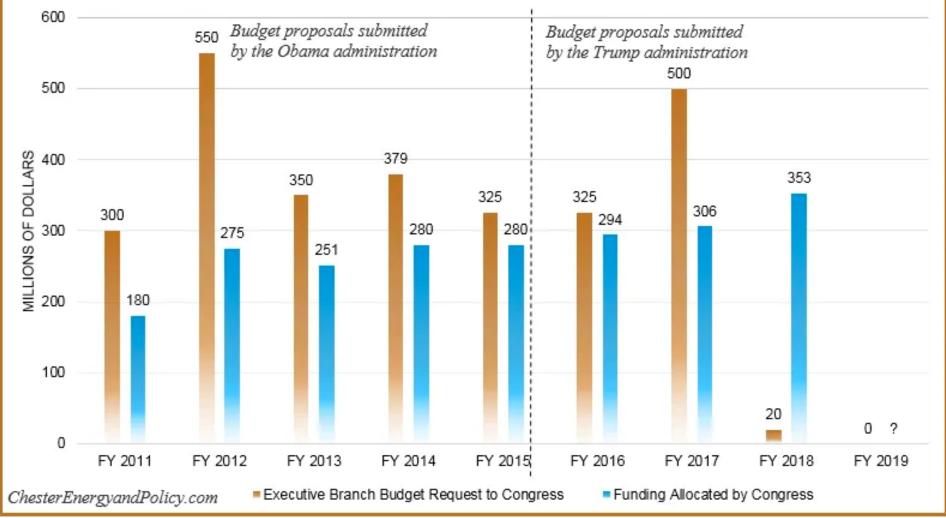
219 projects

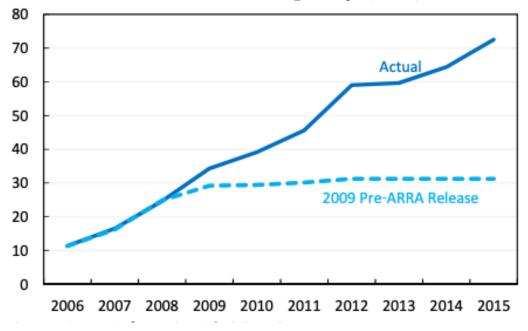
have partnered with other government agencies for further development

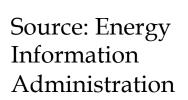
161 Projects have attracted more than

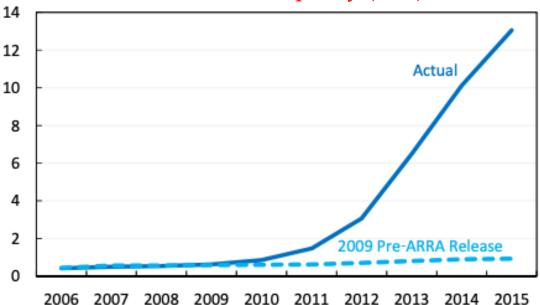
\$3.2 billion

in private-sector follow-on funding


3,658 peer-reviewed **journal articles** from ARPA-E projects


385 patents issued by U.S. Patent and Trademark Office




ARPA-E FUNDING: EXECUTIVE BUDGET PROPOSALS VS. CONGRESSIONAL ALLOCATION

Installed wind capacity (GW)

Installed solar capacity (GW)

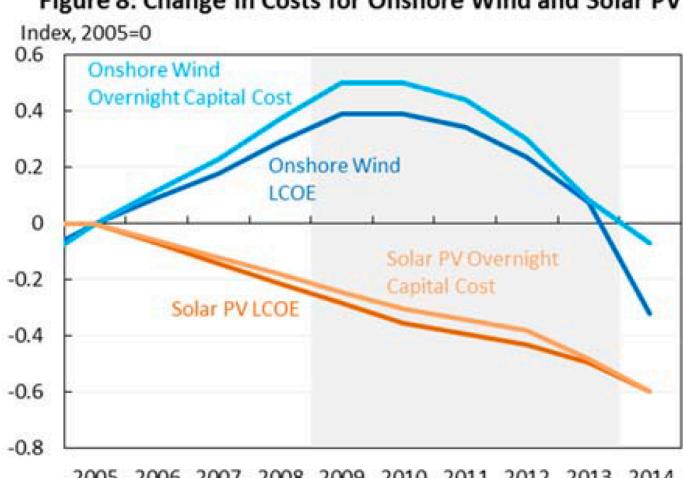


Figure 8: Change in Costs for Onshore Wind and Solar PV

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Source: NREL; Wiser, Bollinger et al. 2013; Lazard 2014.

- ARPA-E
- The Smart Grid Investment Grant. (Authorized in 2007.)
- Loan Program (authorized in 2005) Many successful wind and solar installations Solyndra (\$535M loss), Abound (\$68M loss)
- ATVTM (Advanced Technology Vehicle Manufacturing)

```
Ford ($6B),
Nissan ($1.45B Leaf and battery manufacturing in the U.S.)
Tesla ($465 M),
Fisker went bankrupt ($138 M loss)
```

OMB assigns a credit risk of default. (e.g. If the risk is 20%, that fraction of the loan is set aside as allocated (spent) funds. "self-pay" means the loan applicant pays for the "loan insurance." All of fossil, nuclear and

Table 2. Estimates of LPO Credit Authority (\$billions)				
Programs	Current Remaining Authority	Pending conditional commitments	Net amount available	Credit subsidy appropriations support
Title XVII Volume Caps (self-pay authority)				
Advanced fossil energy	\$8.5B	\$2.0B	\$6.5B	None (self-pay)
Advanced nuclear energy	\$12.7B	\$3.7B	\$9.0B	None (self-pay)
Nuclear – Front End	\$2.0B	-	\$2.0 B	None (self-pay)
Renewable energy and energy efficiency (self-pay)	\$2.5B	_	\$2.5B	None (self- pay)
Subtotal (Title XVII self-pay)	\$ 25.7B	\$5.7 B	\$20.0 B	
Estimated Renewable Energy and Energy Efficiency (supported by credit subsidy appropriation)	\$1.1B	-	\$1.1 B	\$160 million
Subtotal (Title XVII) (self-pay and credit subsidy appropriation)	\$26.8B		\$21.1B	\$160 million
ATVM (supported by credit subsidy appropriation)	\$17.7B	_	\$17.7B	\$4,333 million
Estimated Tribal Energy Loan Guarantee Volume (supported by credit subsidy appropriation)	\$0.1B		\$0.1 B	\$8.5 million
TOTAL	\$44.6B	\$5.7B	\$38.9B	

U.S. DEPARTMENT OF

OFFICE OF

ELECTRICITY DELIVERY & ENERGY RELIABILITY

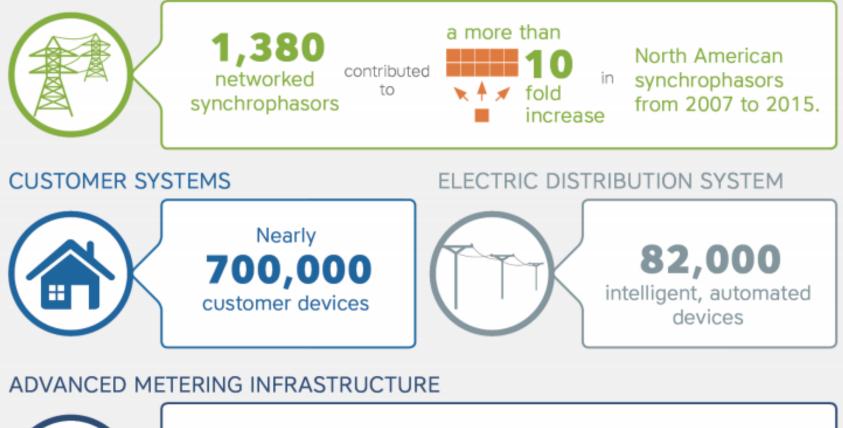
Smart Grid Investment Grant Program Final Report

December 2016

Smart Grid Investment Grant Program (Authorized in 2007.)

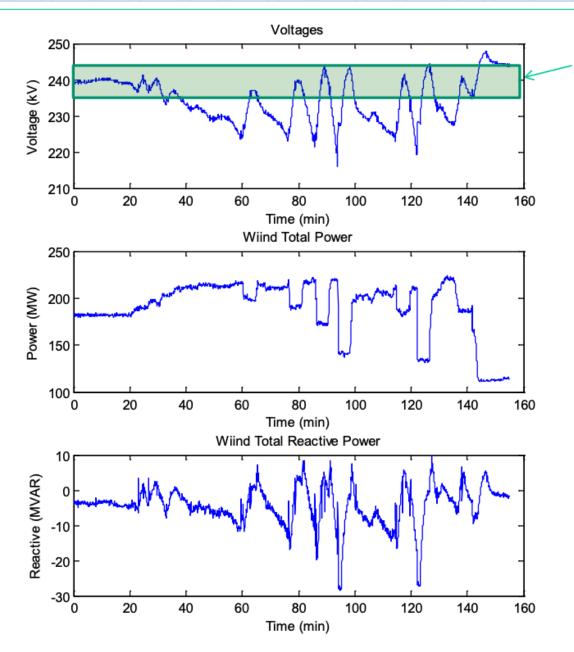
SMART GRID INVESTMENT GRANT (SGIG) PROGRAM OVERVIEW

SGIG PROGRAMS AND FUNDING



SGIG TECHNOLOGY DEPLOYMENTS

ELECTRIC TRANSMISSION SYSTEM

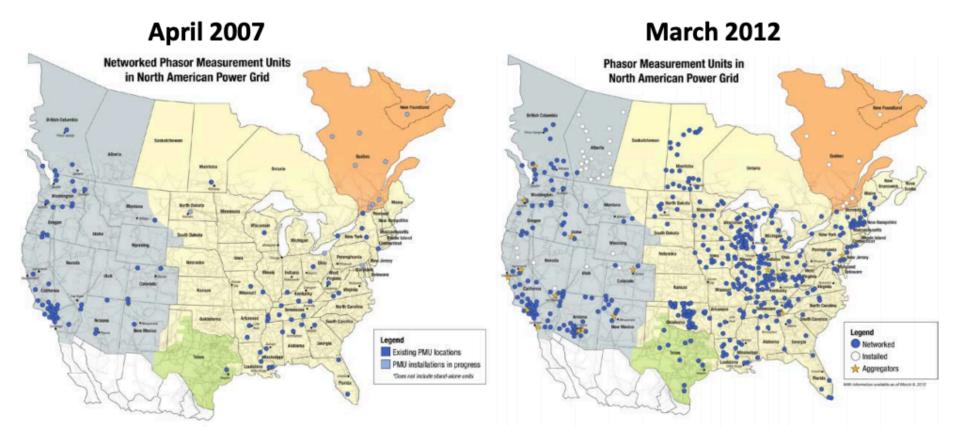


Electricity Delivery & Energy Reliability

American Recovery and Reinvestment Act of 2009

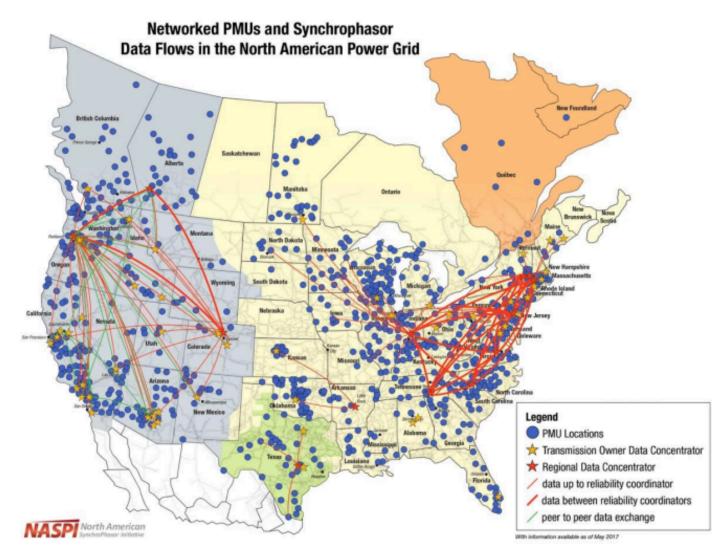
Synchrophasor Technology and Renewables Integration NASPI Technical Workshop June 7, 2014

NASPI Synchrophasor Technical Report



Normal operating range

Voltage and power oscillations at a wind hub with type 2 wind power plants and a type 3 plant in power factor mode, December 2010


Phasor Measurement Units added by the Recovery Act

Networked PMUs across North America

2017 North America Synchrophasor networks

- Over 2,500 networked PMUS
- Most RCs are receiving and sharing PMU data for realtime wide-area situational awareness

Synchrophasor technology improves grid reliability

- 30-60 samples/second (100 times faster than SCADA) & time-synced, provides real-time situational awareness
- High volumes of highly granular data enable insight into grid conditions
 - Early warning of grid events & dynamic behavior
 - Fast identification of failing equipment and asset problems
 - Better models of equipment, generators and power system
- Redundant, secure operator tools and automated system protection

Current uses for synchrophasor technology

Situational awareness

- Wide-area visualization
- Oscillation detection
- Phase angle monitoring
- Voltage stability monitoring
- Trending
- Event replay
- Alarms and alerts
- Linear state estimation
- Fault location

Off-line analysis

- NERC standard compliance
- Forensic event analysis
- Model validation (equipment, generation, power system)
- Identify equipment problems & misoperation
- Field equipment commissioning

Loan Guarantee Program (authorized in 2005)

The U.S. government assumes the risk of loan default. The default risk is mostly determined by OMB, and "credit subsidy (loan insurance) is paid to the U.S. Treasury. In the original bill, the loan applicant pays the credit subsidy, and all fossil and nuclear loans are paid by the applicant. In the Recovery Act, \$6B of credit subsidy funds was appropriated to cover up to \$60 B in loan guarantees. The insurance against assigned risk of the loan is paid to Treasury. All fossil and nuclear loan "credit subsides" were paid by the loan applicant.

Many successful wind and solar installations were financed by the DOE loan program. In 2011, LPO > \$4.6 B to support the first 5 utility-scale solar PV facilities larger than 100 MW. A Financial Institution Partnership Program (FIPP) worked with the DOE and commercial banks (John Hancock, Bank of America, Citigroup).

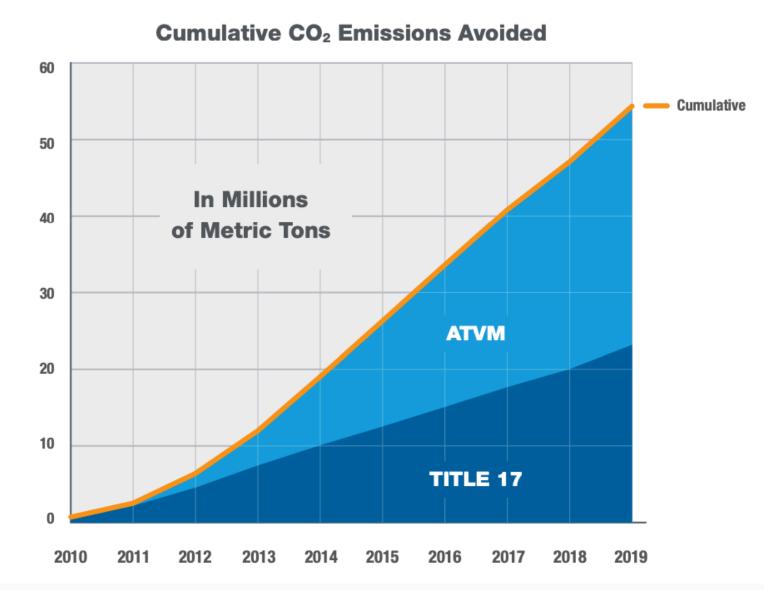
By 2015 there were over 12,000 MW of solar PV capacity installed at utility scale.

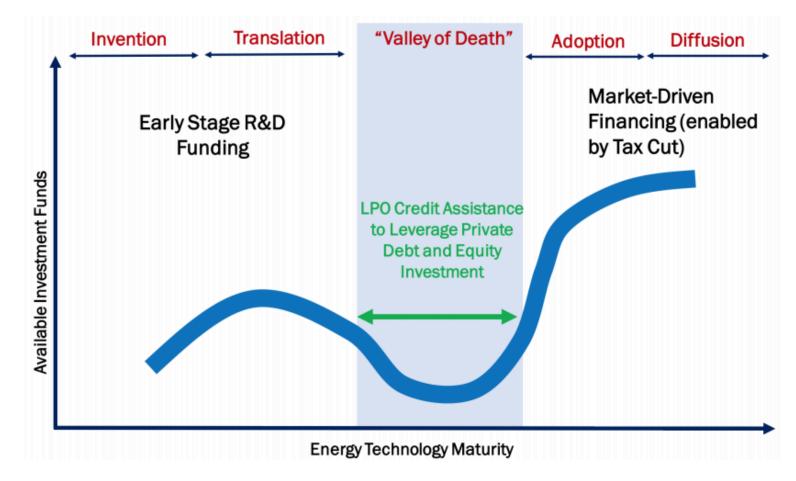
Loan program success

Ford (\$5.9B, final payment due by June, 2022) Nissan (\$1.45B Leaf manufactured in the U.S.) Tesla (\$465 M)

Loan program failures

Solyndra (\$535M loss), Abound (\$68M loss) Fisker (\$138 M), VPG (\$45 M)


LPO Portfolio Performance Summary as of March 31, 2020


Loan and Loan Guarantees Issued	\$35.69 billion
Conditional Commitments	\$2.00 billion
Amount Disbursed	\$28.66 billion
Principal Repaid	\$10.90 billion
Interest Paid*	\$3.01 billion
Actual and Estimated Losses	\$0.79 billion
Losses as % of Total Disbursement	2.74%

* Calculated without respect to Treasury's borrowing cost.

Biggest current risk: Off-take agreements of wind and solar projects with Pacific Gas & Electric (PG&E) and Southern California Edison (SCE).

LPO Portfolio Climate Impact

LPO Bridges the Financing Gap in the Technology Innovation Process

Source: "Leveraging the DOE Loan Program." ENERGY FUTURES INITIATIVE

Table 2. Estimates of LPO Credit Authority (\$billions)

Programs	Current Remaining Authority	Pending conditional commitments	Net amount available	Credit subsidy appropriations support
Title XVII Volume Caps (self-pay authority)				
Advanced fossil energy	\$8.5B	\$2.0B	\$6.5B	None (self-pay)
Advanced nuclear energy	\$12.7B	\$3.7B	\$9.0B	None (self-pay)
Nuclear – Front End	\$2.0B		\$2.0 B	None (self-pay)
Renewable energy and energy efficiency (self-pay)	\$2.5B		\$2.5B	None (self-pay)
Subtotal (Title XVII self-pay)	\$25.7B	\$5.7B	\$20.0 B	
Estimated Renewable Energy and Energy Efficiency (supported by credit subsidy appropriation)	\$1.1B	-	\$1.1 B	\$160 million
Subtotal (Title XVII) (self-pay and credit subsidy appropriation)	\$26.8B		\$21.1B	\$160 million
ATVM (supported by credit subsidy appropriation)	\$17.7B		\$17.7B	\$4,333 million
Estimated Tribal Energy Loan Guarantee Volume (supported by credit subsidy appropriation)	\$0.1B		\$0.1 B	\$8.5 million
TOTAL	\$44.6B	\$5.7B	\$38.9B	

TABLE 1. OVERVIEW OF BENEFITS FROM THE WEATHERIZATION PROGRAM				
SUMMARY OF BENEFITS	RETROSPECTIVE (2008) RECOVERY ACT (2010			
Program Wide Benefits for All Housing Types				
Total Homes Weatherized	97,965	340,158		
Average Cost per Weatherized Home	Total Cost: \$4,695/DOE Investment: \$2,301	Total Cost: \$6,812/DOE Investment: \$5,926		
Average Energy Measure Costs	\$2,899	\$3,545		
Savings Per Household (Present Value)	\$4,243	\$3,190		
Energy Savings (Present Value)	\$340 million	\$1.1 billion		
Total Benefits including Health & Safety (Present Value)	\$13,550	\$13,167		
Savings-to-Investment Ratio (SIR)	1.4 ⁱ Energy Benefits	0.9 ⁱ Energy Benefits		
Jobs Supported	8,500	28,000		
Carbon Reduction	2,246,000 metric tons	7,382,000 metric tons		

Calculated Savings to Investment Ratio (SIR) in an Oak Ridge National Lab (ORNL) study assumes escalating energy prices, a weighted average lifetime for installed measures of about 20 years, and **a discount rate of 2.7%**.

The ORNL study shows that when you add in the costs and the benefits for the health and safety (or non-energy) measures, that the total SIR increase from 1.4 to 4

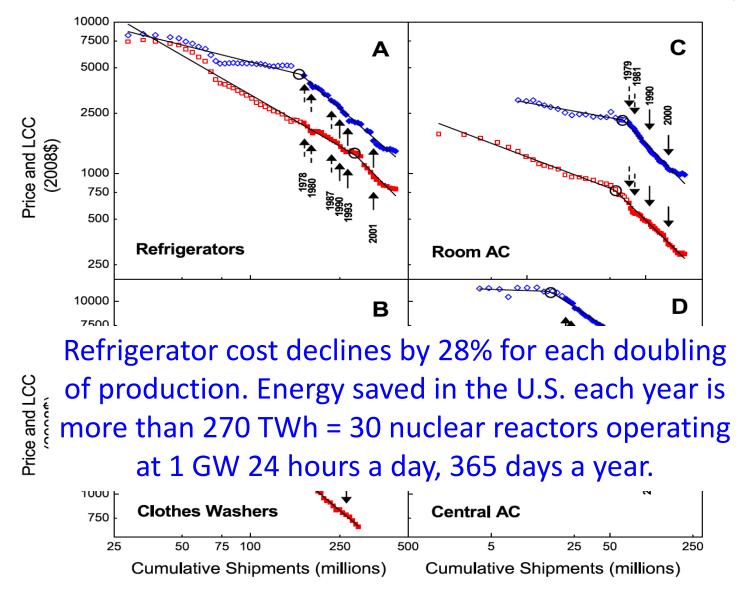
"Do Energy Efficiency Investments Deliver? Evidence from the Weatherization Assistance Program, Meredith L. Fowlie, Michael Greenstone, Catherine Wolfram, Quarterly Journal of Economics (2018), 1597–1644. doi:10.1093/qje/qjy005.

The enrollment phase, which lasted through February 2012.

- 9,000 personal phone calls and 2,720 home visits
- Field staff helped individuals assemble documentation and complete paperwork. In some cases, field staff provided transportation to and from the program agency offices.
- In total, the encouragement and enrollment efforts cost approximately \$450,000, which amounts to \$50 per targeted household and over \$1,000 per weatherized household.

Footnote: "On the one hand, our encouragement costs may have been higher than necessary. To our knowledge, ours was the first encouragement program for WAP, and we learned from our initial experiences how to refine our intervention. On the other hand, the costs in Table I do not reflect the time the research team devoted to overseeing the encouragement effort." "Do Energy Efficiency Investments Deliver? Evidence from the Weatherization Assistance Program, Meredith L. Fowlie, Michael Greenstone, Catherine Wolfram, Quarterly Journal of Economics (2018), 1597–1644. doi:10.1093/qje/qjy005.

Time	Ex ante (NEAT)	Empirical
horizon	projections	estimates
	(1)	(2)
Panel A: Private interna	l rate of return	
10 years	7.0%	-10.6%
16 years	11.9%	-2.3%
20 years	13.0%	0.21%
Panel B: Private interna	l rate of return, adding the avoided emissions	s damages
10 years	11.4%	-7.6%
16 years	15.5%	0.1%
20 years	16.4%	2.3%
Panel C: Social internal	rate of return	
10 years	-3.9%	-17.8%
16 years	3.1%	-7.8%
20 years	5.0%	-4.6%
Panel D: CO ₂ abatemen	t cost, 3% discount (\$/ton CO ₂)	
10 years	\$85	\$322
16 years	\$38	\$201
20 years	\$22	\$161
Panel E: CO ₂ abatement	t cost, 7% discount (\$/ton CO ₂)	
10 years	\$117	\$404
16 years	\$71	\$285
20 years	\$56	\$248

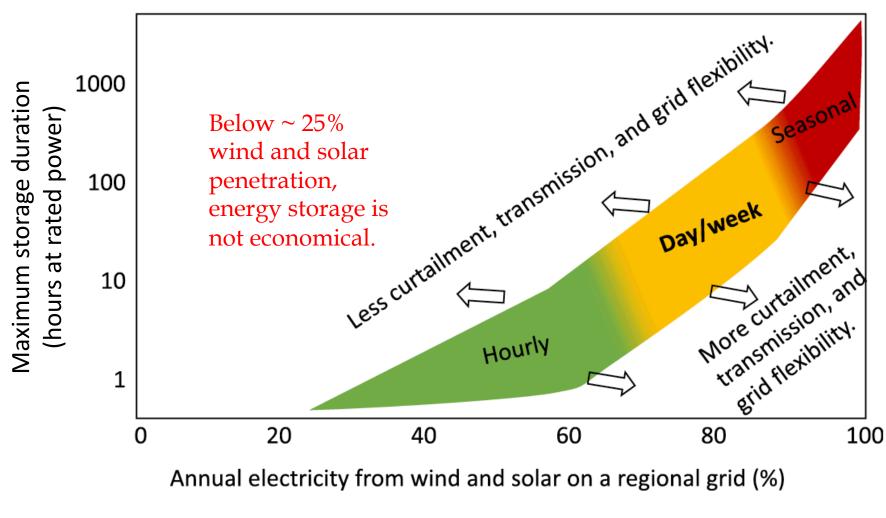

TABLE VII

ESTIMATED RETURNS ON INVESTMENTS IN ENERGY EFFICIENCY

Appliance standards have also been a frequent target of some free-market economists.

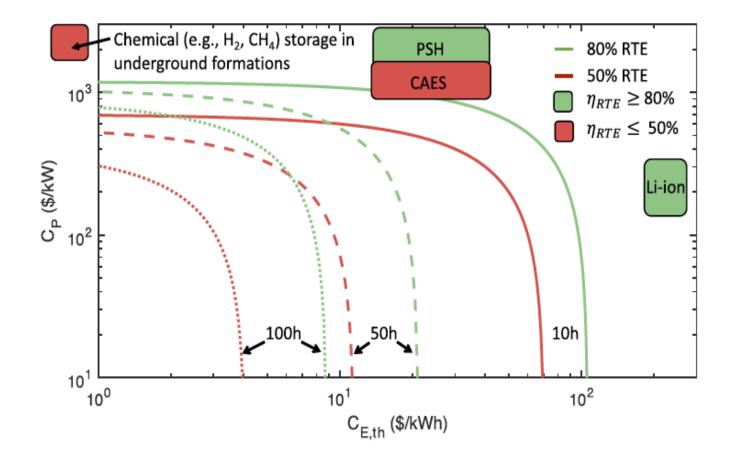
The effect of appliance standards on total cost and purchase price

R. van Buskirk, C. Kantner, B. Gerke and S. Chu, Environ. Res. Lett. 9 114010 (2014)



Clean electricity at 1.5¢/kWh may become a reality in 10-20 years at the best sites in the world.

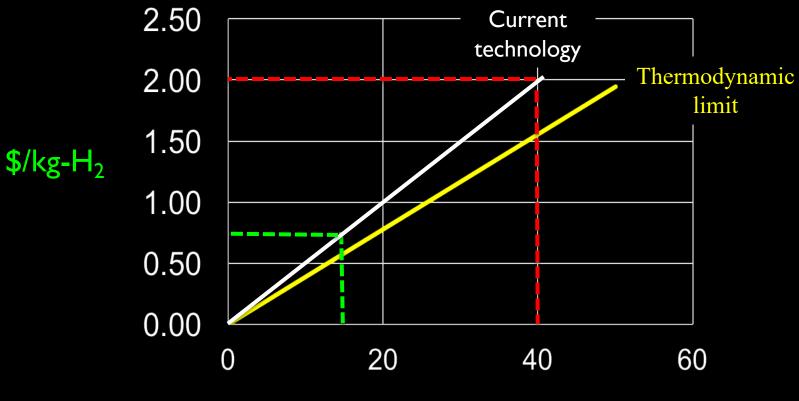
This opens up new opportunities in energy storage and electrochemistry.


"Semi-quantitative summary of the maximum duration storage vs. fraction of variable renewable energy generation for the U.S."

"Long-Duration Electricity Storage Applications, Economics, and Technologies," Paul Albertus, Joseph Manser, Scott Litzelman, Joule **4**, 21 - 32 (2020)

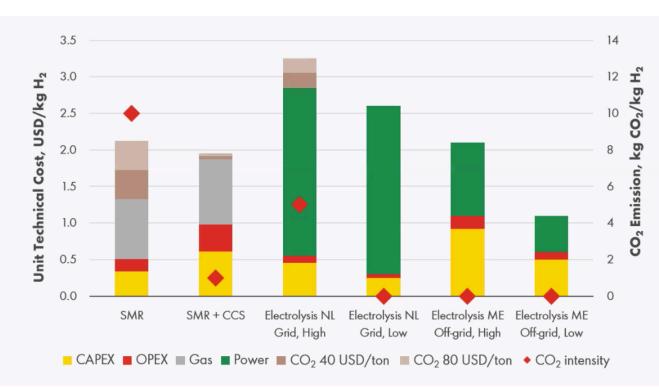
Former APRA-E program managers for the DAYS program

Power and Energy Capital Costs assuming $R_P = 25$ /*kWh*



Natural gas stored in the US in below-ground storage and pipelines $(4x10^{12} \text{ cubic feet} = 1,200 \text{ TWh} = 2 \text{-month supply of US electricity})$

Thermodynamics & Cost Limits

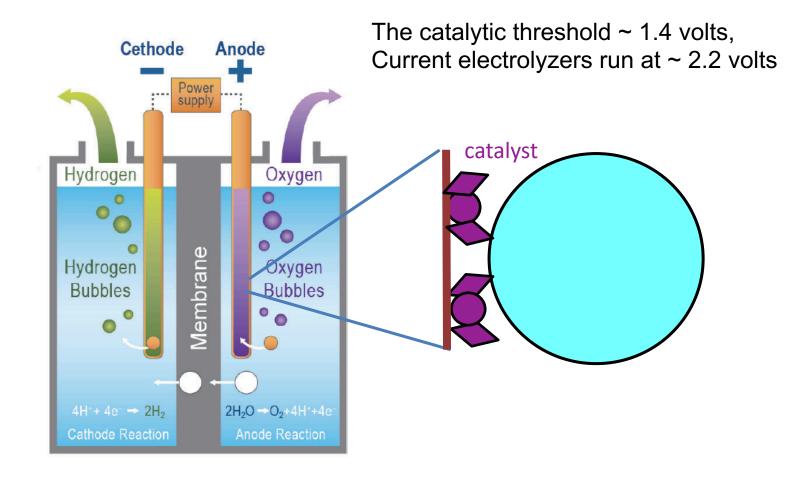

 $H_20 = H_2 + \frac{1}{2} O_2$; $\Delta G = 237.2 \text{ kJ/mol} = 32.4 \text{ kWh/kg-H}_2$

At 1.5 ¢ / kWh, the energy cost is only half the cost of producing H_2 .

Carbon-free Energy Cost (\$/MWh)

Unit Technical Cost of H₂ after 2030

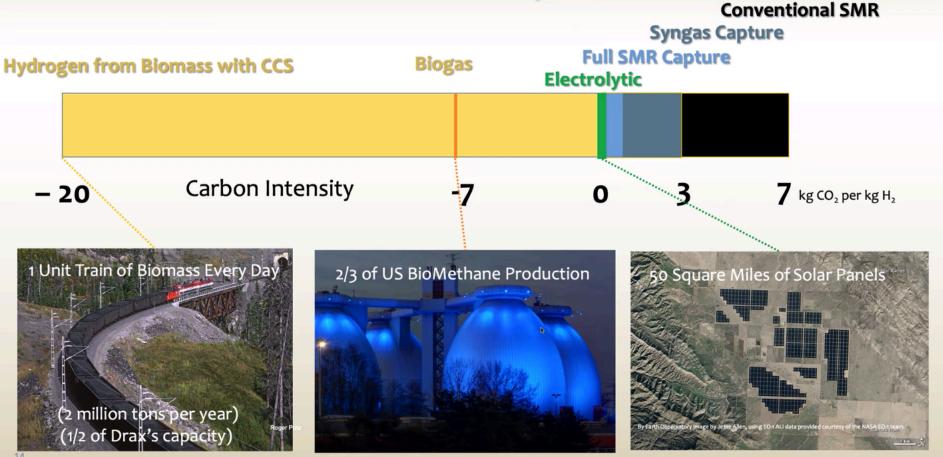
Copyright of Shell International B.V.


Key assumptions:

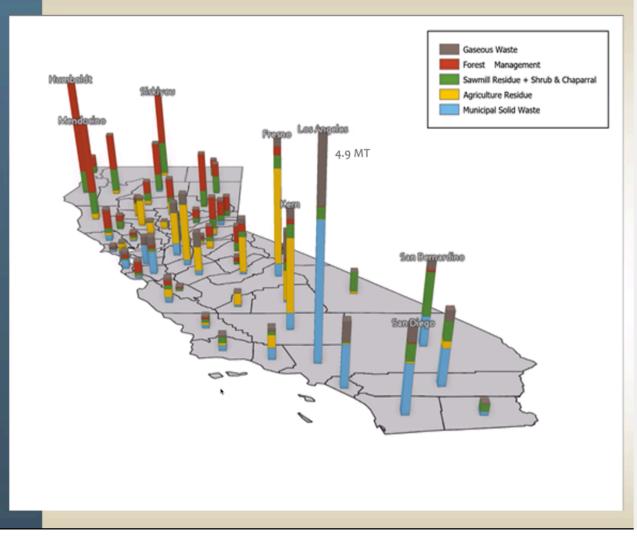
- Large scale H₂ production
- Steam Methane Reforming (+CCS):
 - Natural gas price is 5 USD/MMBtu
- Electrolysis the Netherlands Grid:
 - Power price is 5 cent/kWh in both cases
 - Electrolyzer capacity factor = 100%
 - High case: 70% green power (2030 target); Electrolyzer CAPEX 750 USD/kW
 - Low case: 100% green power (2030+ target); Electrolyzer CAPEX 250 USD/kW
- Electrolysis Middle East Off-grid:
 - Powered by solar PV under a PPA
 - Electrolyzer capacity factor = 50%
 - High case: Power price is 2 cent/kWh (2030); Electrolyzer CAPEX 750 USD/kW
 - Low case: Power price is 1 cent/kWh (2050); Electrolyzer CAPEX 250 USD/kW


Electrolysis of water

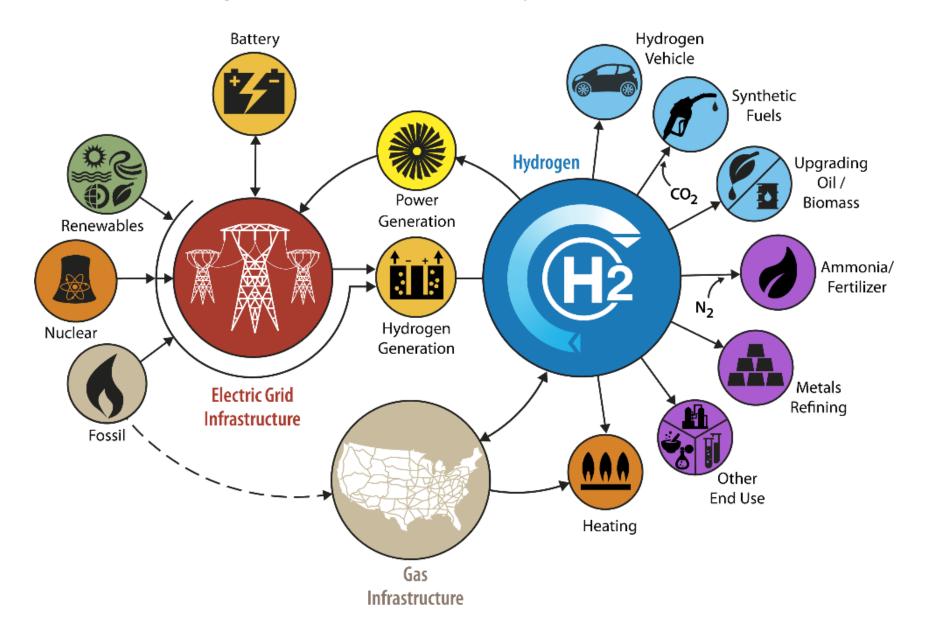
Cathode (reduction): $H_2O(Iiq.) + 2e^- \rightarrow H_2(gas) + 2 OH^-(aq)$ Anode (oxidation): $2 OH^-(aq) \rightarrow \frac{1}{2}O_2(gas) + H_2O(Iiq.) + 2e^-$


Anode (oxidation): $2 H_2O$ (liq.) $\rightarrow O_2$ (gas)+ $4 H^+(aq) + 4e^-$ Cathode (reduction): $2 H^+$ (liq) + $2e^- \rightarrow H_2$ (gas)

Low Carbon Fuel Standard Value



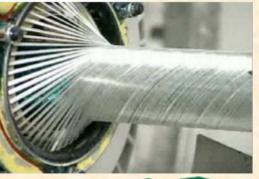
Resource Constraints for 500 t/d Plant



Waste biomass is broadly distributed in California


- 58 million bone-dry tons will be available from waste sources
- 25 million tons are wood
- 100% conversion to CO₂ would yield 106 MT CO₂
- Only waste biomass considered – no energy crops

For widespread use of hydrogen for transportation or heating a pipeline distribution system will be needed



Fiber-Reinforced Polymer (FRP) Pipeline Architecture

Inner thermoplastic pressure barrier is reinforced by helical windings of high-strength glass fiber yarns embedded in an epoxy thermoset resin matrix.

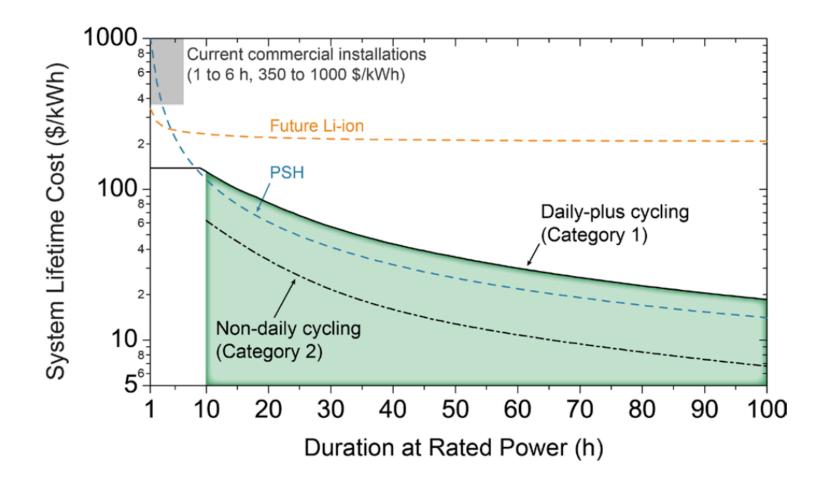
Photo provided by Fiberspar LinePipe, LLC

UT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Capital cost estimation for FRP hydrogen transmission pipelines

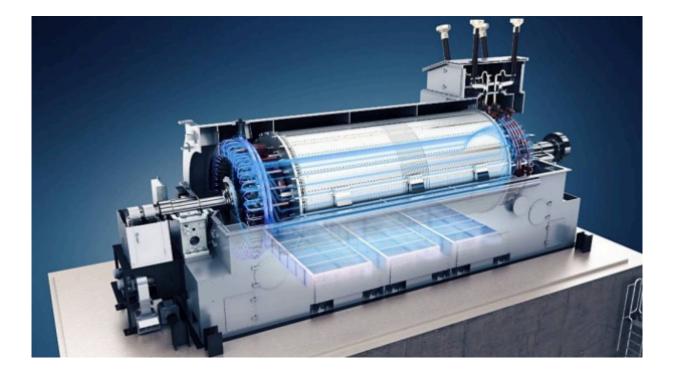
- Today's cost for 4.5-inch ID, 1500 psi-rated FRP pipeline (pipeline, connectors, transportation, installation) is approximately \$80k per mile
- Installation of four 4.5-inch ID pipelines would require investment of approximately \$331k to \$346k per mile, excluding ROW and permitting costs.


City Size	FRP	Est'd	Total	2017	16-inch ID
	Pipelines	ROW &	Capital	Cost	Steel
	Installed	Permitting	Investment	Target	Pipeline
	(\$k/mi)	(\$k/mi)	(\$k/mi)	(\$k/mi)	(\$k/mi)
200,000	331 – 346	250	581 – 596	490	636

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Duration Addition to electricitY Storage (DAYS) Overview

Duration Addition to electricitY Storage (DAYS)



LCOS cost (0.05 \$/kWh-cycle) assumed 50% of renewable energy is directly used and 50% is cycled through the storage system. This price is competitive with electricity generated by future combined cycle natural gas plants (which are in the range of 0.041 to 0.074 \$/kWh).

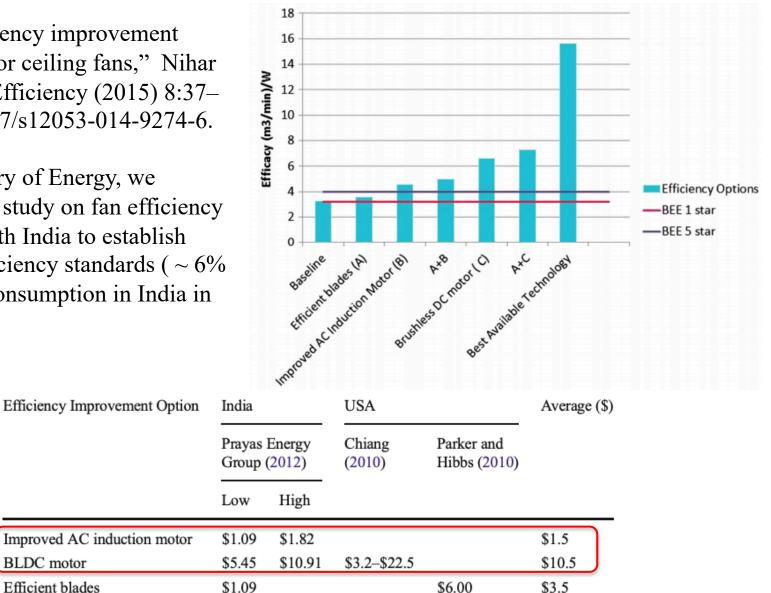
With 90% flowing through the storage asset, the combined LCOE would still be competitive at 0.07 \$/kWh.

Conversion of electrical energy directly into heat is 100% energy efficient but creates unnecessary entropy. The measure of energy that is useful for conversion into mechanical work is defined by the "exergy" of the thermodynamic system.

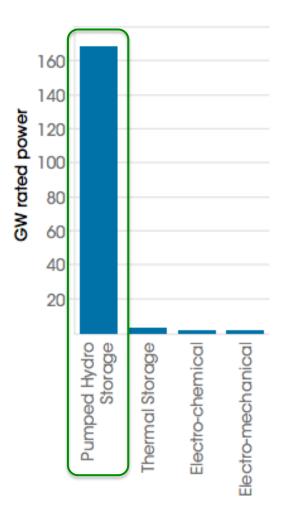
The goal is to minimize the creation on unnecessary entropy. The conversion of electricity to mechanical motion/work, $W = \vec{F} \cdot \Delta \vec{x}$, can be ~ 99% efficient.

S-Gen 2000P Air-pressurized cooling replaces hydrogen cooled generators

Variable frequency drives increase the range where they are energy efficient. The downside of high-power variable speed motors is the reliability of power electronics

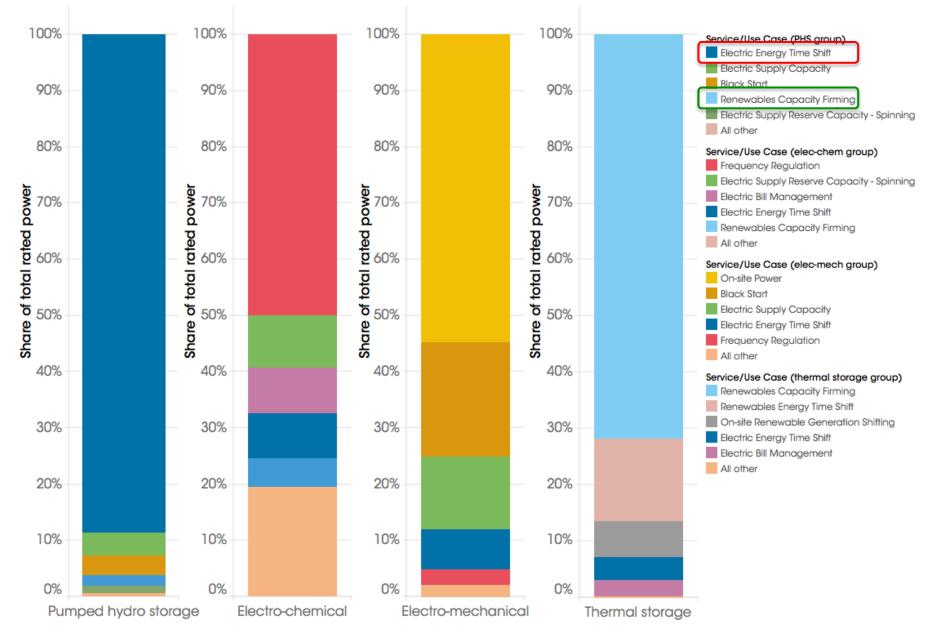

Many inexpensive AC induction motors are < 50% efficient.

Source: "Efficiency improvement opportunities for ceiling fans," Nihar et al., Energy Efficiency (2015) 8:37-50 DOI 10.1007/s12053-014-9274-6.


While Secretary of Energy, we commissions a study on fan efficiency and worked with India to establish ceiling fan efficiency standards ($\sim 6\%$ of electricity consumption in India in 2000).

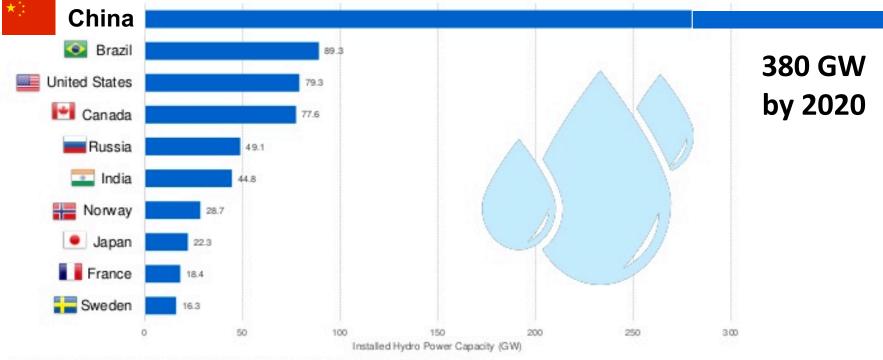
BLDC motor

Efficient blades

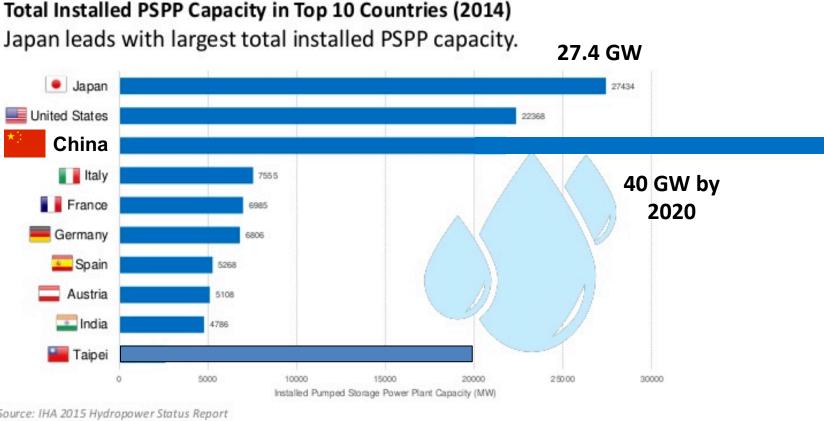

Global operational electricity storage power capacity by technology, mid-2017 (IRENA 2017 Report of Energy Storage)

96% of energy storage world-wide is pumpedstorage in 2017. Round-trip efficiencies 70% - 85% efficient.

New hydropower projects take twice as long to permit as other energy sources including solar, wind, or natural gas projects, and *time is money*.

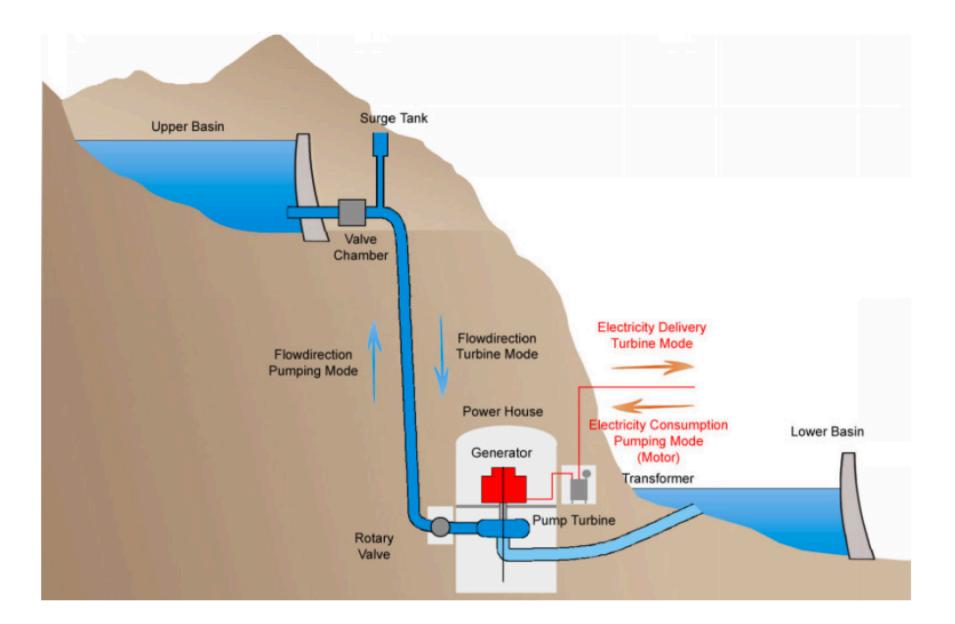

Figure 7: Global energy storage power capacity shares by main-use case and technology group, mid-2017

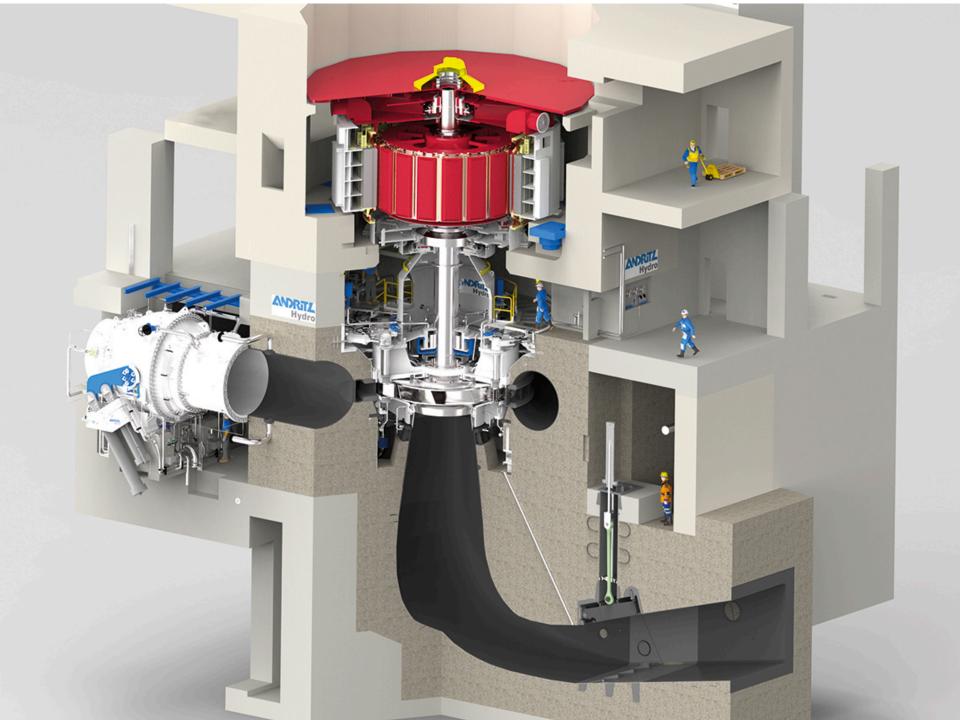
Source: US DOE, 2017.


Hydroelectric in The World

Total Installed HPP Capacity in Top 10 Countries (2014) China leads with largest total installed hydropower capacity

Source: IHA 2015 Hydropower Status Report, exclude Pumped Storage Power Plant IEA October 2015 Monthly Electricity Statistics


Pumped Storage PP in The World



IEA October 2015 Monthly Electricity Statistics

Adjustable-speed pump-turbines have been used since the early 1990s in Japan and the late 1990s in Europe. Another advantage of adjustable speed units is the increase in overall unit efficiency: the turbine can be operated at its optimum efficiency level under all head conditions and power demand needs.

The size of the machinery of hydro power is *massive*.

Pump turbine runner

Variable speed generator

Eagle Mountain Project (Riverside County California)

California Public Utilities Commission approved on March 26, 2020

Calls for 1 gigawatt of "pumped storage, or other long-duration storage with similar attributes" by 2026. Anticipates 11 gigawatts of utility-scale solar by 2030, nearly 3 gigawatts of wind

Cycles	Life Years	Round-Trip Efficiency (%)	Source
	20	82	Aquino et al. (2017b)
20,000	50	80	May et al. (2018)
	>20	70-87	Shan and O'Connor (2018)

Table 4.26. Cycles, life years, and round-trip efficiency of pumped storage hydro.

Assumptions of net present value (discount rate) and lifetime of investment are critical for longer term-projects.

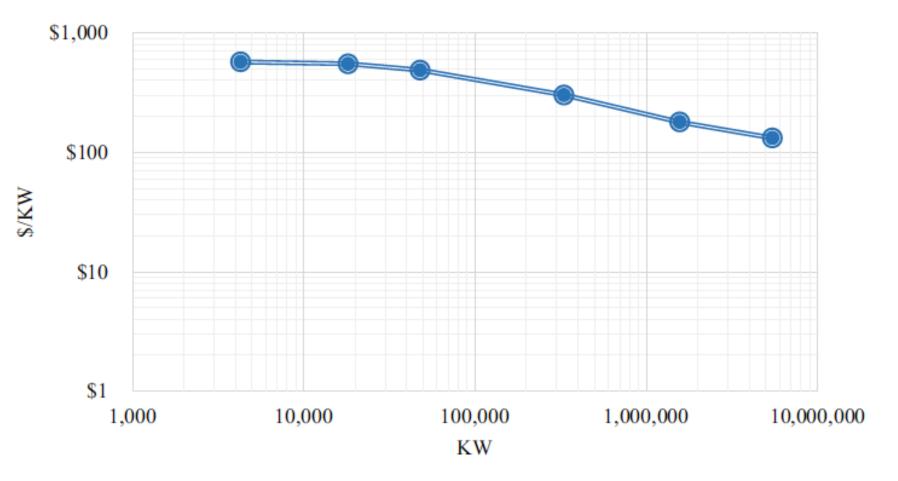


Figure 4.1. Cost of electromechanical equipment for hydro plants.

Storage Cost and Performance Characterization Report. K Mongird et al., PNNL (2019)

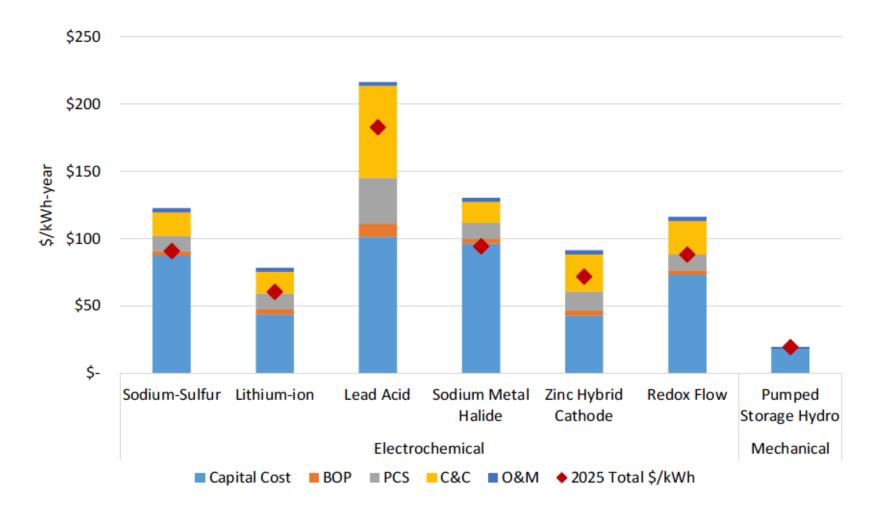
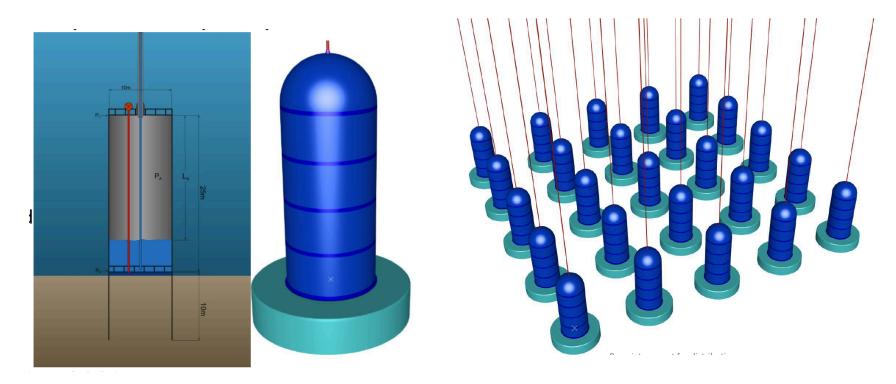


Figure 5.3. Annualized \$/kWh-yr cost of battery storage technologies vs. pumped storage hydro by cost component.

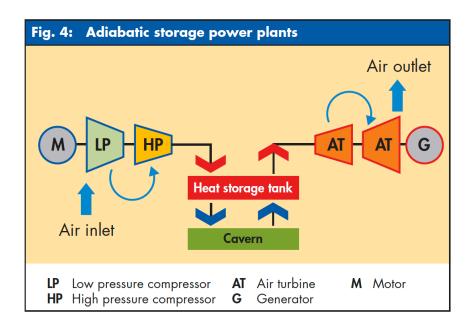

Deep Blue

Ocean Assisted Isothermal Energy Storage Modular Scalable Grid Scale - Unlimited Cycle Life Just add Air and Water

Philip Lubin Mark Pryor Directed Energy – Vorticy – UC Santa Barbara

lubin@ucsb.edu

Leverage Existing Deep-Sea Exploration for Oil and Gas


Cylindrical Container -Hemispherical Top –Open Bottom

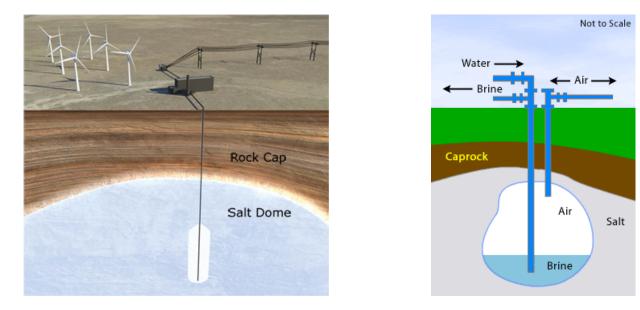

Compressed Air Energy Storage (CAES)

Fig. 2: CAES power plants in existence today					
Location	Huntorf, Germany	McIntosh, USA			
Commissioned	1978	1991			
Store	Two cylindrical salt caverns, each with 150,000 m ³ at a depth of 600 m – 800 m (height 200 m, diameter: 30 m)	Salt cavern, 538,000 m³ at a depth of 450 m – 750 m			
Output	290 MW over 2 hours	110 MW over 26 hours			
Energy required for 1 kWh el	0.8 kWh electricity	0.69 kWh electricity			
	1.6 kWh gas	1.17 kWh gas			
Pressure tolerance	50 – 70 bar	45 – 76 bar			
Remark	World's first CAES plant	First CAES plant with recuperator			

What is "new?" Add adiabatic energy storage: Air compressed to ~70 bar would heat up to around 900K.

Multistage air compressors use inter- and after-coolers to reduce discharge temperatures to 149/177°C and cavern injection air temperature reduced to 43/49°C. T Heat storage used to re-heat expanding gas

Mitsubishi Hitachi and Magnum Development announced development to store to store ~ 1 GWh of energy. The project will also combine renewable hydrogen, compressed air storage, large-scale flow batteries, and solid oxide fuel cells

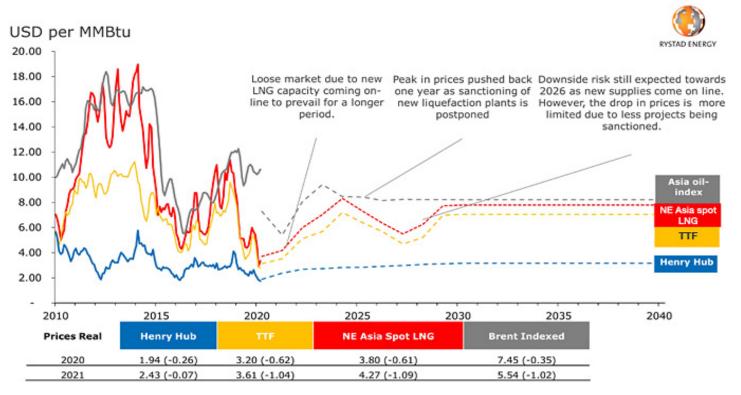
Isothermal Compressed Air Energy compression and expansion could improve round-trip efficiency and lower capital costs. *Isothermal CAES requires heat to be removed and added continuously, but in principle it can be 100% efficient.*

Heat transfer is proportional to the $\Delta T \times ($ surface area). Large ΔT generates excess entropy. A large surface area adds to capital costs. **Possible solutions have been proposed based upon reciprocating machinery**. One method is to spray fine droplets of water inside the piston during compression. The high heat capacity of water keeps the temperature approximately constant within the piston – the water is removed and either discarded or stored and the cycle repeats.

"Repurposing Mines as Alternative Storage Reservoirs

Recently, the concept of using repurposing abandoned mines as alternative locations for one or both storage reservoirs has been considered. The use of an open pit mine, such as the abandoned iron ore mine pits in Southern California proposed for the Eagle Mountain Pumped project, in concept is a viable alternative, and is similar to using a manmade reservoir. There is no incremental environmental impact and the upper and lower reservoirs (the abandoned open pit quarries) are existing and simply hydraulically connected.

Locating one or both of the reservoirs in underground mines, however, has significant concerns and challenges. Typical underground mining results in small passages looking like an ant farm in cross section and are not suitable as is for a lower reservoir configuration. Quite simply, the pumpturbines would be starved of water in the pump mode. The underground excavation and material costs, construction risk, and time required for underground excavation and construction necessary for the volume of water and elevation difference make the economics of such a project questionable. These underground sites have been evaluated due to the perceived lack of availability of potential surface reservoirs and the potential for reduced environmental impacts. There are no operating pumped storage projects worldwide that utilize an underground reservoir." Renewable energy at ~ 15 / MWh (1.5 ¢ / kWh) will be cheaper than natural gas. 1 million (MM) Btu of energy = 293 kWh

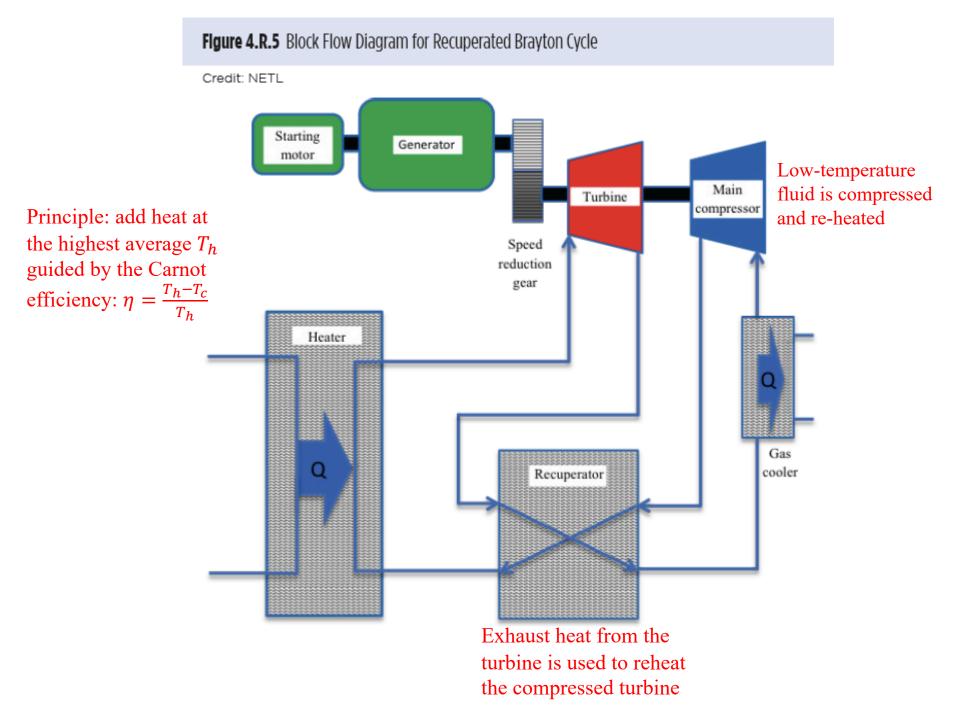

1.5 e/kWh = \$4.39/MM Btu.

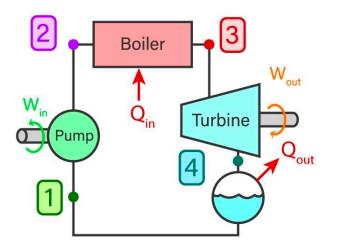
The cost of natural gas varies between \$2.50 - \$8.00 /MM Btu (See chart below)

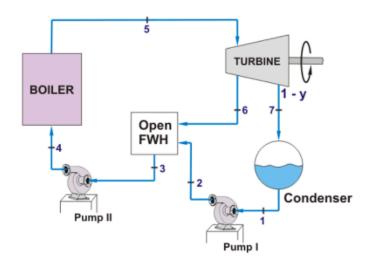
Natural gas power plants emit an average of 550 grams CO_2 per kWh

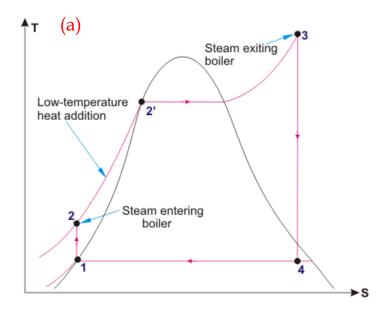
= 0.16 tonnes CO₂/MM Btu

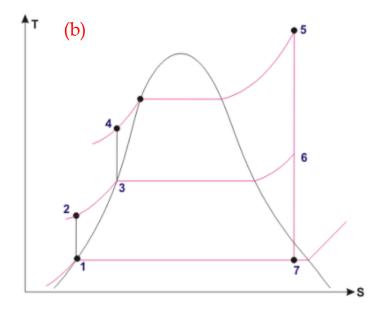
If there is a carbon price of \$60/tonne, the cost of using natural gas and emitting it adds ~ \$9.60/ MM Btu. (High-efficiency plants will still cost > \$7/ MM Btu) The cost of carbon capture, sequestration and monitoring will likely be \$40 - \$60/tonne of CO_2

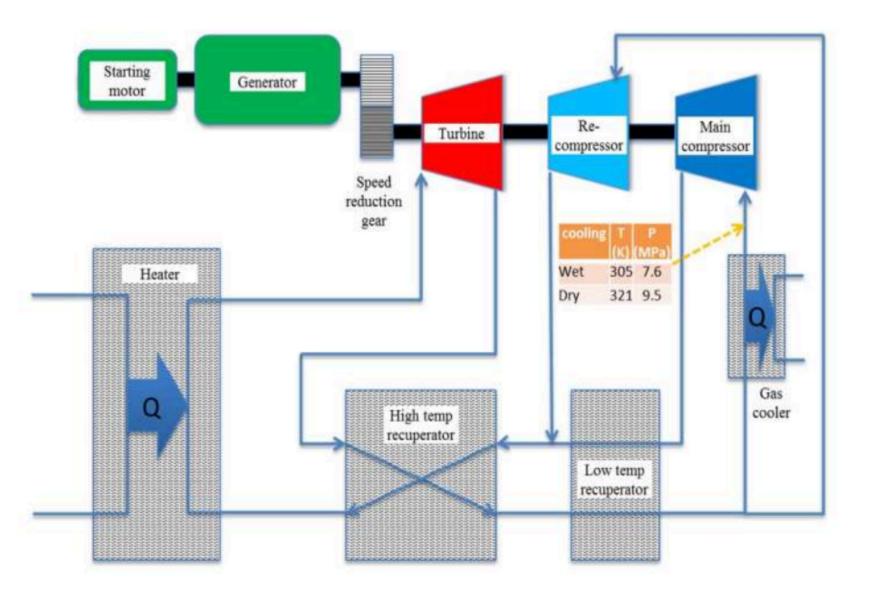



Utility-scale thermal energy storage

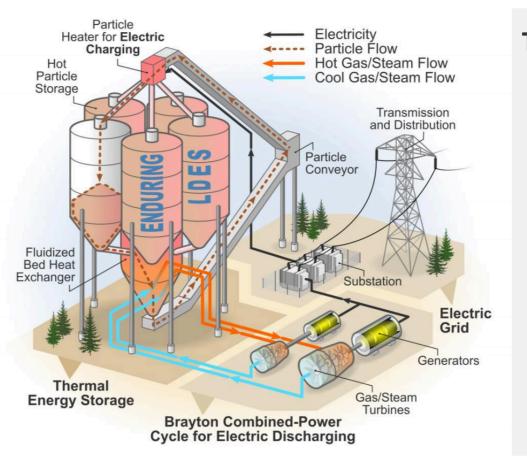

Figure 4.R.1 Block Flow Diagram for Simple Brayton Cycle


Credit: NETL Starting Generator motor Turbine Compressor Can we use surplus renewable energy to Speed reduction heat a thermal mass? gear High temperature thermal mass Gas cooler


https://www.energy.gov/sites/prod/files/2016/06/f32/QTR2015-4R-Supercritical-Carbon-Dioxide-Brayton%20Cycle.pdf



A Brayton generator with high and low temperature recuperators.


https://www.energy.gov/sites/prod/files/2016/06/f32/QTR2015-4R-Supercritical-Carbon-Dioxide-Brayton%20Cycle.pdf

Storage Cost and Performance Characterization Report. K Mongird et al., PNNL (2019)

Capital Cost (\$/kW)	Notes	Source
\$1,500-\$4,700	•	Aquino et al. (2017b)
\$70-\$230/kWh		Kamath (2016)
\$2,020	\$762/kW in 1985 converted to 2018 dollars using 3% escalation rate	United States Bureau of Reclamation (2018)
\$250-\$350/kWh		May et al. (2018)
\$1,500-\$2,000	Target cost for project to be economical. Excludes transmission upgrade cost of \$700/kW and civil and infrastructure cost of \$460/kW	Manwaring (2018a)
\$3,000	For 50 MW system	Manwaring (2018a)
\$1,300	Projected cost for Eagle Mountain PSH in Southern California	Manwaring (2018a)

 Table 4.24.
 Capital costs of pumped storage hydro systems.

ENDURING Long Duration Energy Storage (LDES)

Technology Innovations

- ENDURING LDES operates as a standalone thermal battery for grid-scale electricity storage.
- Inexpensive, stable, abundant solid particles as storage media.
- Novel fluidized bed heat exchanger for cost-effective and efficient power conversion.
- Decoupled power and storage duration.
- Scalable system for wide storage capacity (10 – 100 hours) and power (60 – 300 MWe).

Challenges and Risk Mitigation

Commercial 360-MW FB boiler

FB HX

- 1. Particle stability at 1,200°C
 - Knowledge/resources from Allied Mineral,
 Purdue Center for Particulate Products and
 Processes, and particle suppliers will be applied.
 - Several particle types will be screened/tested.
- 2. Fluidized Bed (FB) Heat Exchanger (HX) design
 - Strong team expertise on gas/solid two-phase flow modeling, testing, and scaling up will be tapped.
 - Industry experiences and commercialized technologies will be leveraged.

ENDURING Project Team

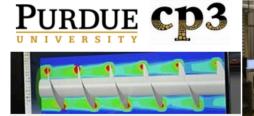
NREL is specialized in thermal energy storage in concentrating solar power (CSP):

- Early advocacy of the supercritical carbon dioxide (sCO2) Brayton power cycle.
- SunShot projects using particles as heat transfer fluid and storage media.

GE Global Research (GE-GRC) will lead the power system integration:

- Global leader in power system equipment and services.
- Record power conversion efficiency of gas-turbine combined cycles.

ENDURING Project Team



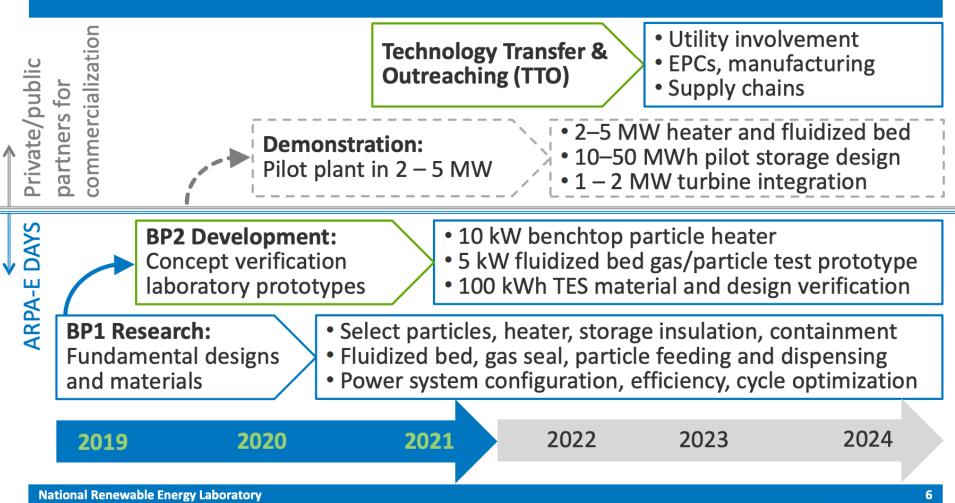
Colorado School of Mines (CSM) participated in NREL's SunShot project in TES and particle system.

POWER Engineers (PEI):

- Power system integration
- Power generation engineering

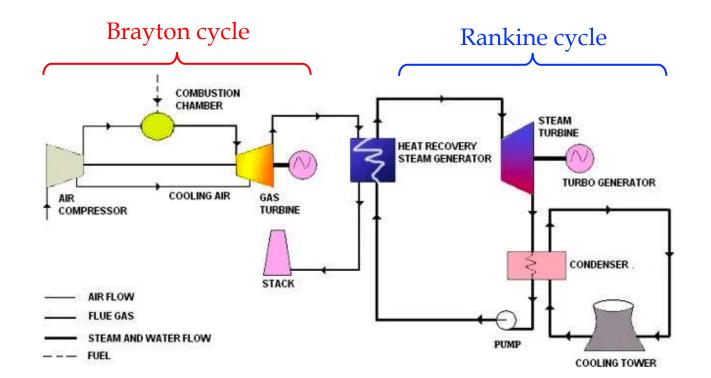
Purdue Center for Particulate Products and Processes has full line of particle characterization equipment, and expertise in MFIX modeling.

A s

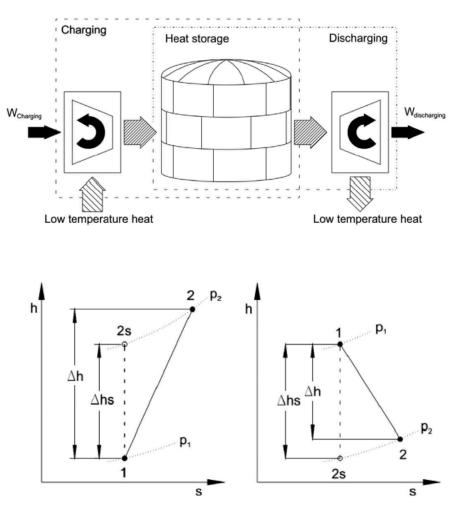


Allied is

specialized in refractory


materials, powder, high-temperature insulation (>1,600°C) material, design and construction.

Project Objectives and Timeline



GE H-class turbine (inlet temperature 1600 C and combined cycle efficiency 63%

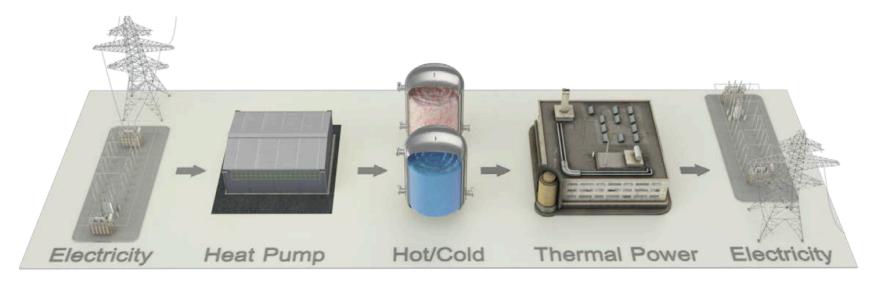

Thermodynamic Analysis of High-Temperature Carnot Battery Concepts, Wolf-Dieter Steinmann, Henning Jockenhöfer, and Dan Bauer, Energy Technol. 2020, 8, 1900895

Figure 2. Nonideal compression (left) and expansion (right) as the source for efficiency losses in the hs-diagram.

Carnot Batteries

Basic premise:

- Charge: heat pump or electric heater
- Discharge: some kind of heat engine (Brayton cycle, Rankine cycle etc.)
- Based on established thermodynamic cycles

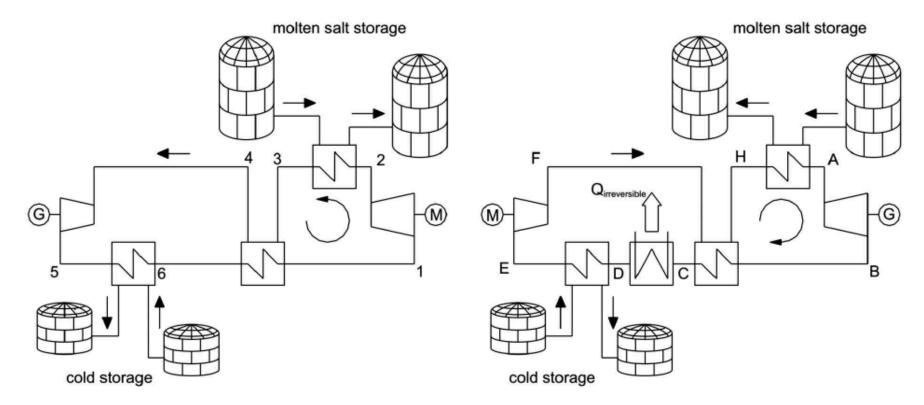
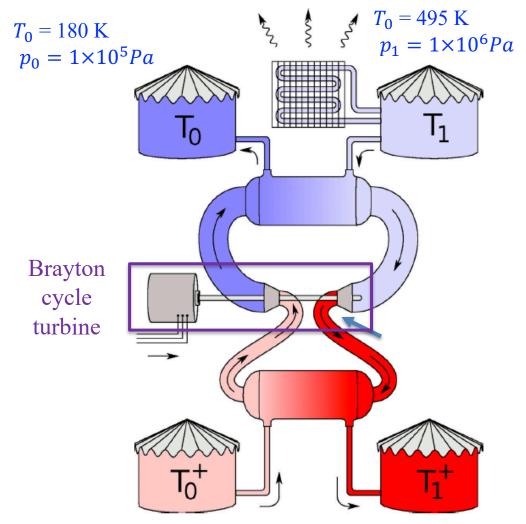



Figure 5. Schematic of the recuperated Brayton PTES variant: charging (left) and discharging (right).

Pumped thermal grid storage with heat exchange Robert B. Laughlin, J. Renewable Sustainable Energy 9, 044103 (2017);

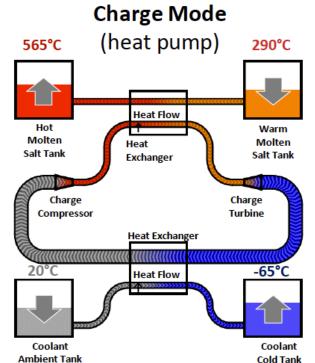
 $T_0^+ = 300 \text{ K}$ $p_0 = 1 \times 10^5 Pa$ $T_0^+ = 823 \text{ K}$ $p_h = 3.6 \times 10^6 Pc$ Laughlin uses 4 thermal storage volumes and the electrical energy is used to move heat analogous to mechanically pumping water.

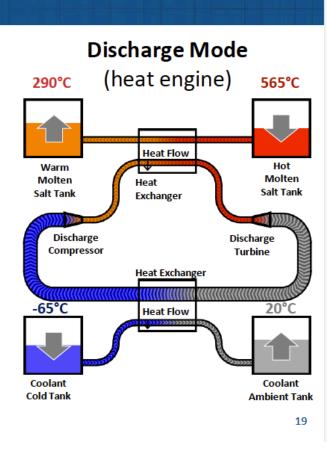
A Brayton turbine uses electrical energy to move energy stored at thermal reservoir T_1 to a reservoir at T_1^+ . The same turbine is boosted by allowing heat at T_0^+ flow to T_0 . Heat exchangers are used as energy recuperators.

If $T_0^+/T_0 = T_1^+/T_1 = \xi$, and the turbine and compressor is perfectly adiabatic and the heat exchangers are very large, the heat storage engine $\eta_{store} = 1$

For
$$\eta_c$$
, = 0.9, η_t = 0.93,
 $\eta_{store} = 1 - \frac{2T_{dump}}{T_1 - T_0} \left(\frac{1}{\eta_c} - \eta_t\right) \frac{\ln \xi}{\xi - 1}$

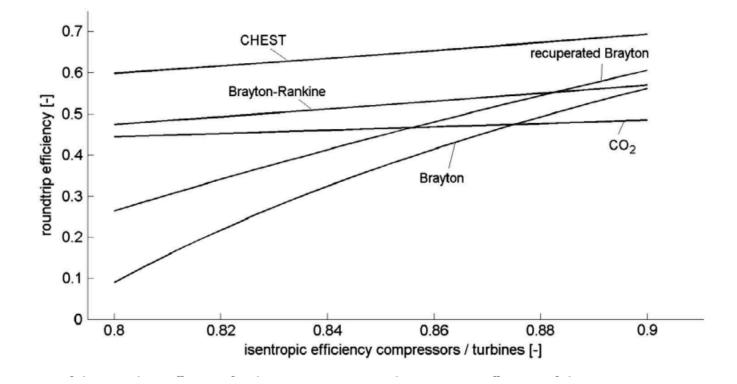
Commercial interest

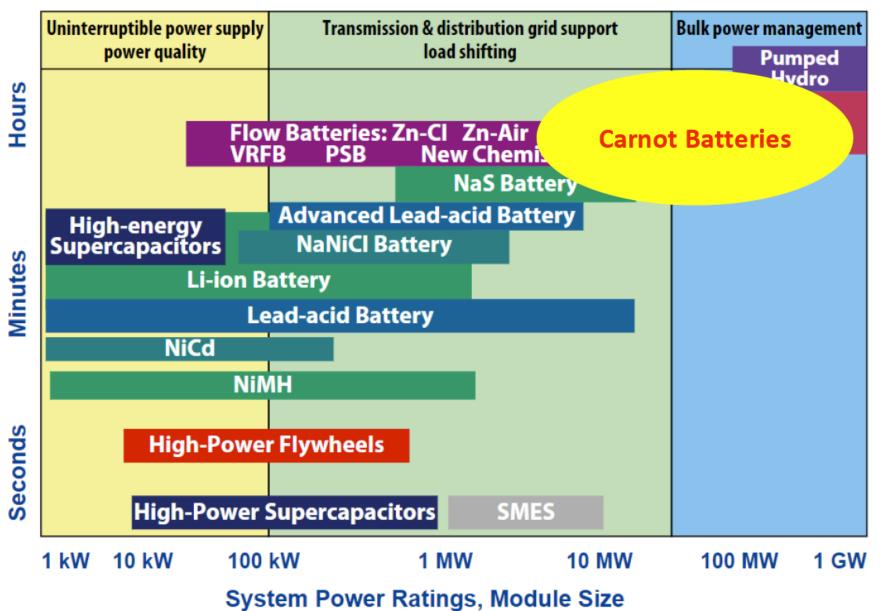




Technology Overview

Unique features:

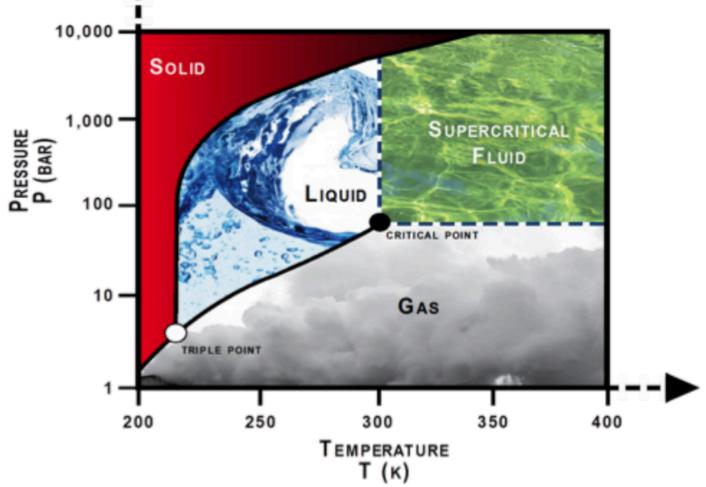

- Air working fluid
- Liquid storage
- Hot & Cold
- "New" Component Challenges
- Custom TM
- Affordable low-temperature coolant
- Affordable large heat exchangers



CHEST = Compressed Heat Energy Storage

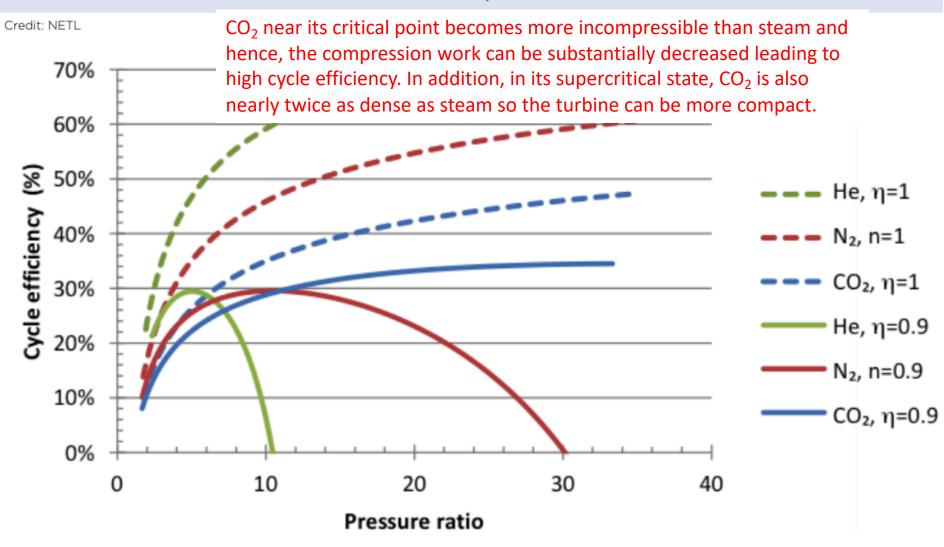
Dependence of the roundtrip efficiency for the PTES variants on the isentropic efficiency of the engines; temperature difference of 10 K assumed for all heat transfer processes.

Discharge Time at Rated Power


Steam has been historically used as the working fluid in a turbine generator.

 \overline{CO}_2 is a better.

Figure 4.R.4 CO₂ Phase Diagram


Credit: Wikimedia Commons

A fluid near its critical point has a density, closer to the density of a liquid than of a gas. With the CO_2 near the critical pressure at the point of entrance to the compressor, its density will be relatively high and the power requirement for compression will be lower.

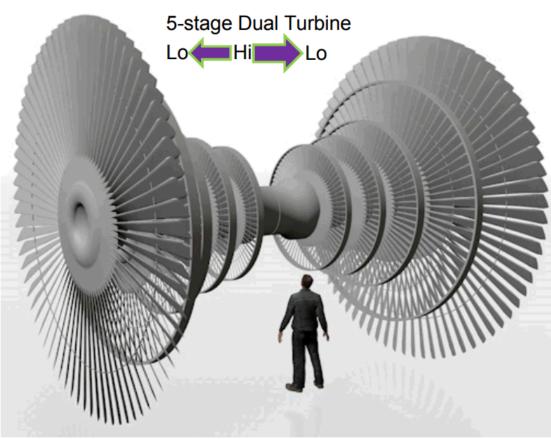
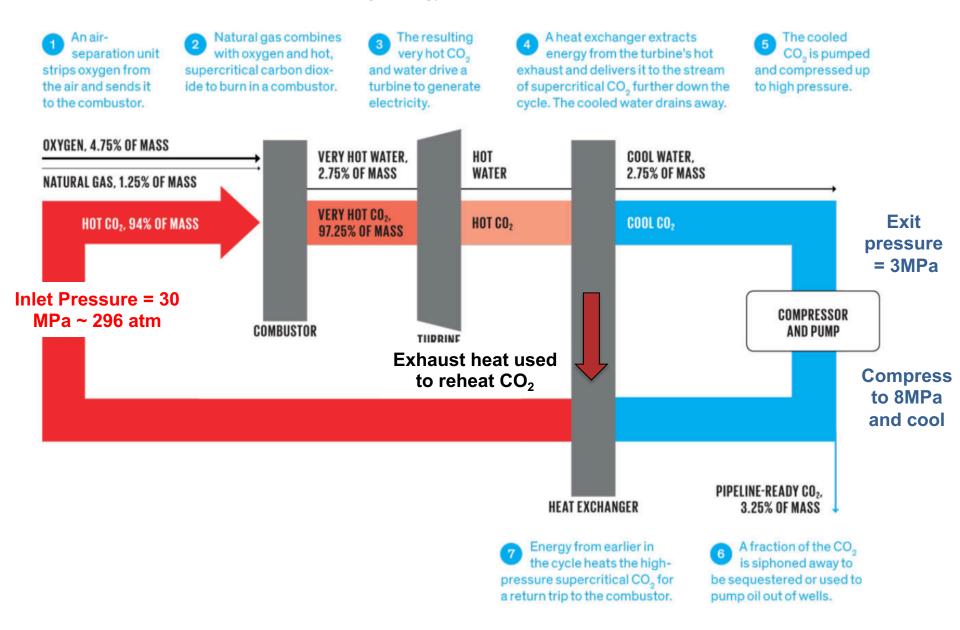

Turbines work at $\sim 90\%$ adiabatic efficiency.

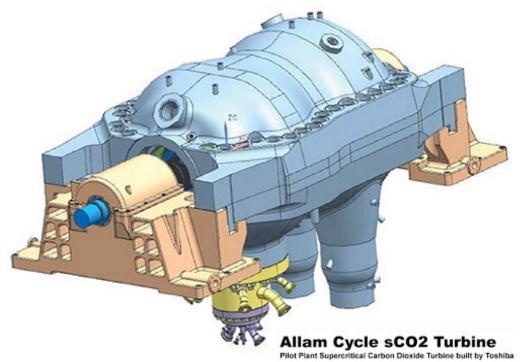
Figure 4.R.2 Simple Brayton Cycle Efficiency. Plot of cycle efficiency versus pressure ratio for three different working fluids with ideal turbomachinery (dashed lines) and non-ideal cycles with turbomachinery isentropic efficiencies (η) of 0.9.⁵

Transformational Energy Systems

20 meter Steam Turbine (300 MWe) (Rankine Cycle)

Comparison

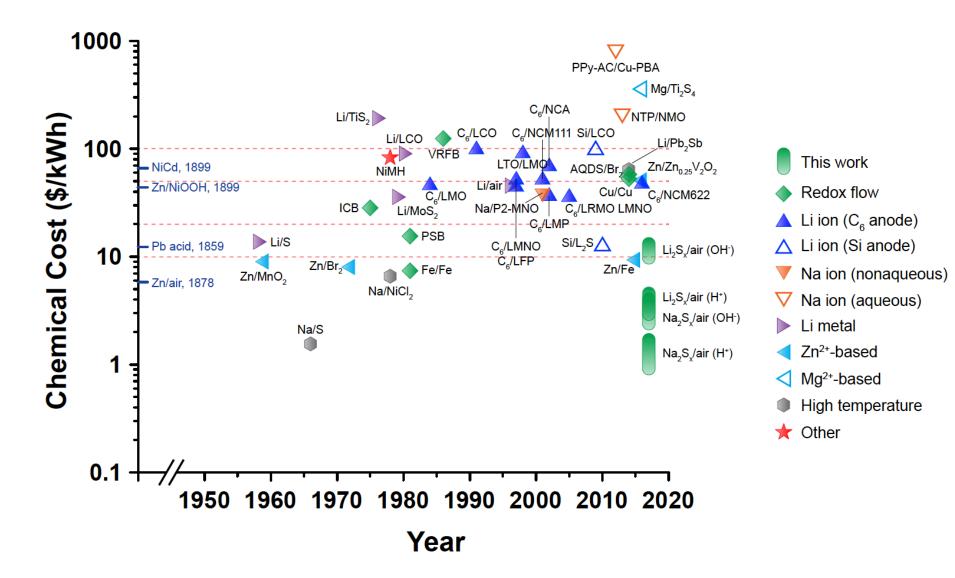

- Rankine efficiency is 33%
- Supercritical CO₂ (sCO₂) potential to surpass 40% efficiency
- Greatly reduced cost for sCO₂ compared to the cost of conventional steam Rankine cycle
- sCO₂ compact turbo machinery is easily scalable



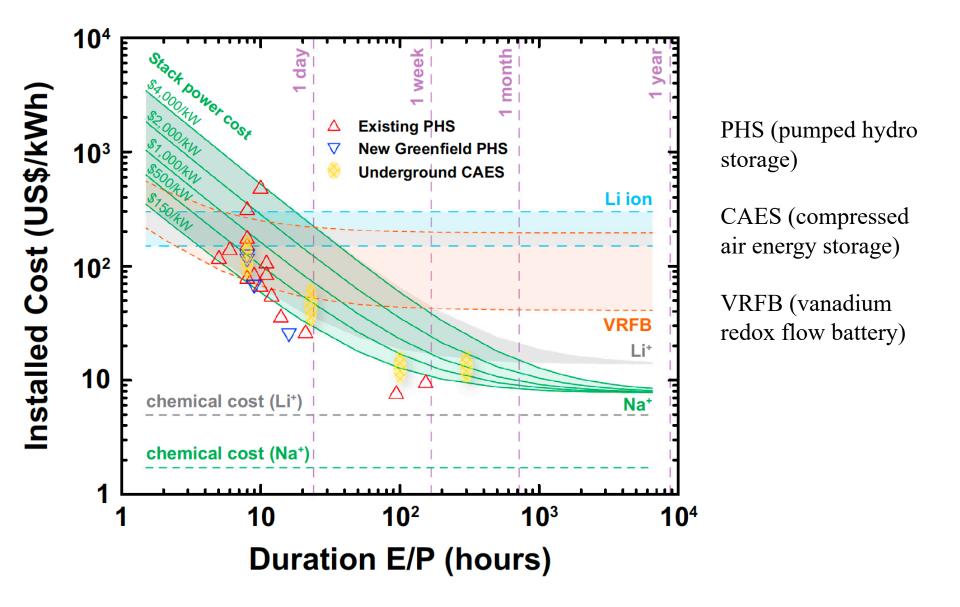
1 meter sCO₂ (300 MWe) (Brayton Cycle)

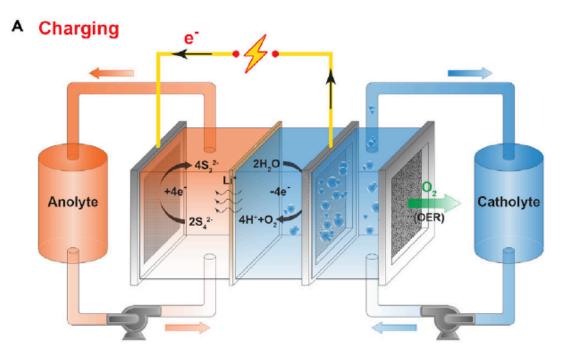
Allam Cycle CO_2 + natural gas turbine

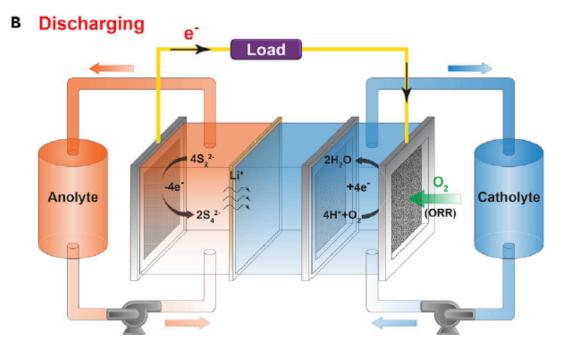
https://spectrum.ieee.org/energy/fossil-fuels/this-power-plant-runs-on-co2

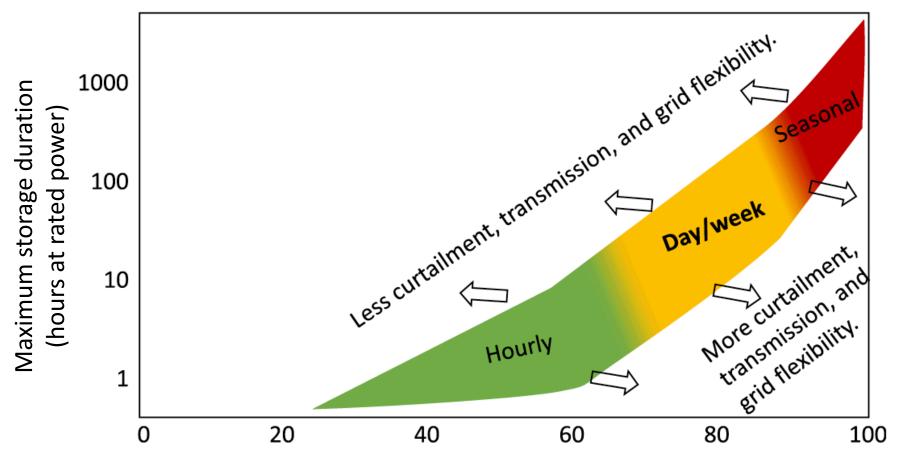


Toshiba 50 MW CO₂ Allam Cycle turbine




New ideas in flow batteries


Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long Duration Electrical Storage, Zheng Li ... Yet-Ming Chiang, Joule 1, 306–327 (2017)


Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long Duration Electrical Storage, Zheng Li ... Yet-Ming Chiang, Joule 1, 306–327 (2017)

Summary: There are potentially new energy storage technologies for 100-hour storage (e.g. heat storage). All are focused on minimizing unnecessary entropy generation by mimicking pumped storage

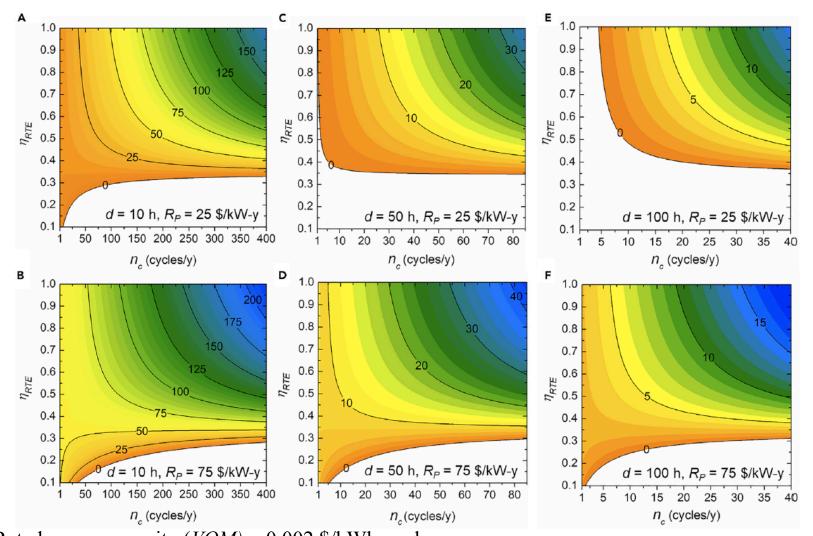
Annual electricity from wind and solar on a regional grid (%)

END

Additional slides

Revenue over financial life of project
$$\Leftrightarrow$$
 total cost of ownership (\$/kWh)

$$\sum_{t=1}^{T} (1+r)^{-t} \left[\Delta_{E,t} n_{c,t} + R_{P,t} d^{-1} \right] = \left[C_P d^{-1} + C_{E,th} \eta_D^{-1} \right]$$


$$+ \sum_{t=1}^{T} (1+r)^{-t} \left[n_{c,t} P_{C,t} (\eta_{RTE}^{-1} - 1) + n_{c,t} VOM_t + d^{-1} FOM_t \right] + C_{Re} (1+r)^{-L/n_c}$$

"Long-Duration Electricity Storage Applications, Economics and Technologies," P. Albertus, J. Manser, S. Litzelman, Joule 4, 21 - 32 (2020)

Abb.	Definition	η_{RTE}	Round trip efficiency
Δ_E	Price differential of charging/discharging	d	Price differential of charging/discharging
$C_{E,d}$	Deliverable installed energy cost	DOD	Deliverable installed energy cost
$C_{E,th}$	Theoretical installed energy cost (no loss)	FOM	Theoretical installed energy cost (no loss)
C _{eff}	Per-cycle cost of efficiency losses	PV _R	Per-cycle cost of efficiency losses
C _P	Installed power cost	r	Installed power cost
E _r	Rated energy of storage block	r	Rated energy of storage block
n _c	Number of equivalent cycles	Т	Number of equivalent cycles
P _C	Input charging price	ТСО	Input charging price
P _r	Rated power capacity	VOM	Rated power capacity
R _P	Revenue from capacity payments	C _{Re}	Revenue from capacity payments
η_D	Discharge efficiency	L	Discharge efficiency

Revenue from capacity payments at $R_P = \frac{25}{kWh}$ and $= \frac{25}{kWh}$

"Long-Duration Electricity Storage Applications, Economics and Technologies," P. Albertus, J. Manser, S. Litzelman, Joule 4, 21 - 32 (2020)

Rated power capacity (*VOM*) = 0.002 \$/kWh-cycle Installed energy cost (*FOM*) = 1% of installed capital cost (representative of Pumped Storage Hydro) Input charging price (P_C)= 0.025 \$/kWh-cycle $\Delta_E = 0.05$ \$/kWh-cycle, no storage medium replacements.

Storage Cost and Performance Characterization Report, K Mongird et al., PNNL (2019)

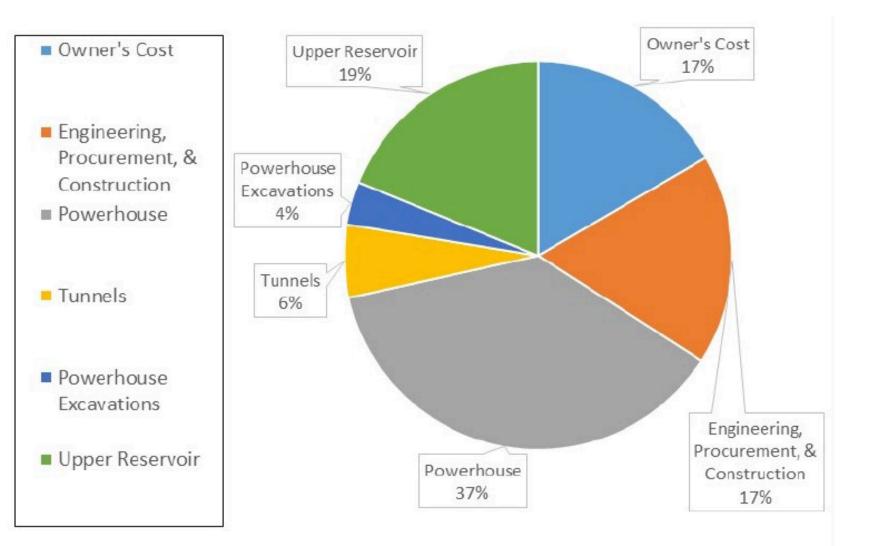
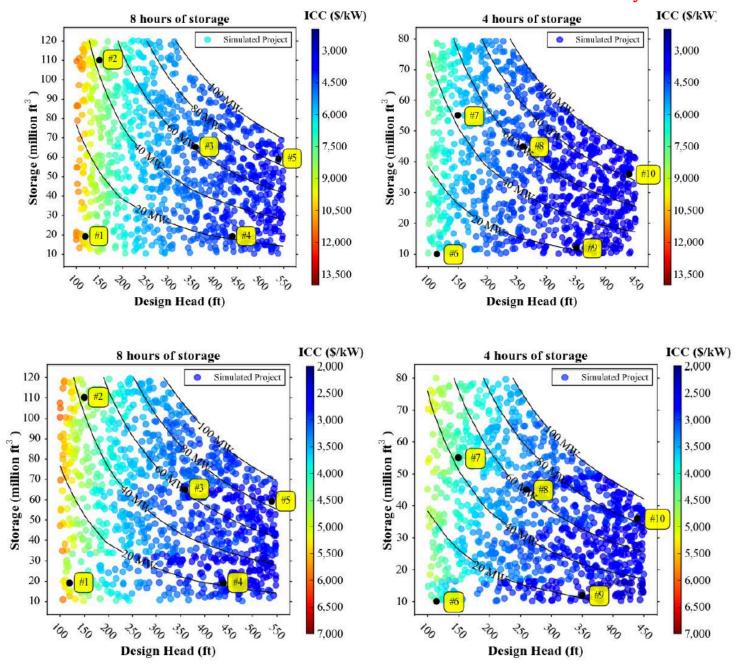



Figure 4.2. Capital cost breakdown for a pumped storage hydro plant.

Test Case 1: Full excavation of two reservoirs is necessary.

DO ENERGY EFFICIENCY INVESTMENTS DELIVER? EVIDENCE FROM THE WEATHERIZATION ASSISTANCE PROGRAM Meredith Fowlie Michael Greenstone Catherine Wolfram

NATIONAL BUREAU OF ECONOMIC RESEARCH

National Energy Audit Tool (NEAT) produces an estimate of the energy savings and costs associated with different combinations of efficiency measures. The present value of energy savings are calculated using a discount rate of 3% and an engineering estimate of the lifespan of the measures. The WAP program requires that all recommended measures return a minimum of \$1.00 in incremental savings for every \$1.00 expended in labor and material costs.

WAP is the nation's largest residential energy efficiency program and has provided more than 7 million low-income households with weatherization assistance since its inception in 1976. Recipient households in our study received approximately \$5,150 worth of home improvements on average, with zero out-of-pocket costs. The most common measures included fur Nace replacement, attic and wall insulation, and infiltration reduction. Importantly, WAP only pays for energy efficiency measures that pass a cost-benefit test, based on ex ante engineering projections, with the aim of ensuring that only beneficial investments are undertaken. For Program Year 2010, 65 percent of homes were site-built, 15 percent were mobile family, and 20 percent were large multi-family. Applying the above estimates of savings per unit to the over 800,000 sites ORNL notes are weatherized with ARRA funds over the 2010 to 2013 period implies that there would be an estimated 97 million MMBtu saved as a result of the ARRA funds in the WAP.41 Taking the average of the ORNL savings estimates across site types gives an average savings of 19.63 MMBtu per site per year. Using the EIA (2009b) summary data on household energy consumption and expenditures to estimate average expenditures per MMBtu, the energy savings from WAP lead to an average savings of \$444 per year per weatherized site.

ORNL calculates equivalent emissions reductions from PY 2010 energy savings using state specific emissions factors based on state-specific energy portfolios. With this approach they estimate a reduction of 7,382,000 metric tons of carbon. If attributing the MMBtu to a reduction in an energy source with an emissions rate of natural gas, then this energy savings corresponds to a reduction in CO2 by 403,482 for newly weatherized sites in PY 2010. Applying these estimates to all weatherized sites over the period 2010 to 2015 implies a reduction of over 5 million metric tons of carbon. This calculation is likely an underestimate to the extent that energy savings offset energy use from more carbon-intensive sources (e.g., electricity use from coal-fired generation).

"Do Energy Efficiency Investments Deliver? Evidence from the Weatherization Assistance Program, Meredith L. Fowlie, Michael Greenstone, Catherine Wolfram, Quarterly Journal of Economics (2018), 1597–1644. doi:10.1093/qje/qjy005.

The study was conducted in southeast Michigan. To select the study sample, we first identified census blocks that had high rates of home ownership, high rates of natural gas heating, and household incomes that would qualify for weatherization assistance... From this group we drew a sample of over 30,000 households. Approximately one-quarter of these were randomly assigned to an encouragement "treatment." The remaining "control" households were free to apply for WAP but were not contacted or assisted in any way by our team.

Encouragement activities ran from March to May 2011. During the encouragement phase, field staff made almost 7,000 initial in person house visits, and with 23,500 targeted robocalls to raise awareness of the weatherization program and our encouragement campaign.

Storage Cost and Performance Characterization Report. K Mongird et al., PNNL (2019)

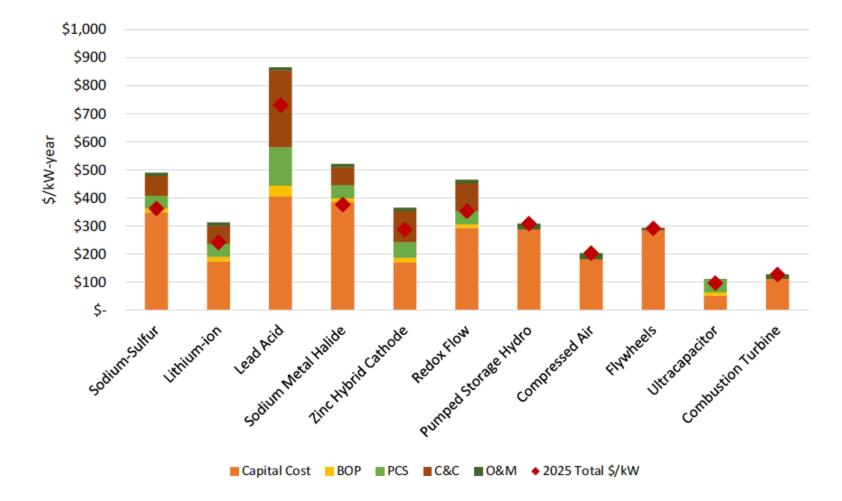
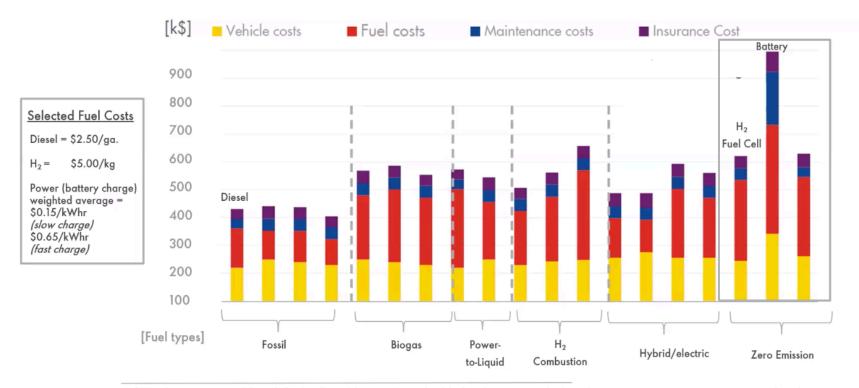


Figure 5.5. Annualized \$/kW cost of all technologies.

Table 19.	CAES	and	LAES	Com	parison
-----------	------	-----	------	-----	---------

Item	Compressed Air Energy Storage	Liquid Air Energy Storage	
General Criteria			
Commercial status (developmental, commercial, mature)	Commercial	No Commercial Operation	
Number of plants to date	2 to 3 commercial plants currently operational	1 pilot plant worldwide	
Year of first operation	1978	2010	
Typical project lead times (months)	24 to 28 months	Not enough data available	
Footprint or energy density (ft^2 per MW)	20 acres for 135 MW Block	Not enough data available	
Applicability for long-term operation- multiple hour operation	Peak shaving and Intermediate Service (8 hours of daytime	Peak shaving and Intermediate Service (8 hours of daytime	
(e.g., peak shaving, sustained outages)	operation w/ 8 hours of compression at night typical)	operation w/8 hours of compression at night typical)	
Applicability for short-term operation- subhourly operation	Similar characterstics to a simple cycle gas turbine, provided	Similar characterstics to a simple cycle gas turbine, provided	
(e.g., power quality applications)	compressed air is available.	compressed air is available.	
	Plant emissons similar to simple cycle gas turbine application.	Plant emissons similar to simple cycle gas turbine application.	
Potential environmental/regulatory factors	Compressors require cooling water supply (mechanical draft cooling		
	tower required).	tower required).	
Electrical transmission considerations	Same as a simple cycle gas turbine.	Same as a simple cycle gas turbine.	
Vehicular access and local infrastructure considerations	Same as a simple cycle gas turbine. Natural gas pipeline required.	Same as a simple cycle gas turbine. Natural gas pipeline required.	
	Solution mined salt cavern, aguifer, or mined hard rock cavity		
Geological or topographic factors	(limestone mines) required.	No major geological requirements	
Required size of interconnection (kV)	230 kV or higher	230 kV or higher	
	Limited suppliers available, integrity of cavern used for storage of	Existing components are mature technology, but the overall system	
Technology risks	compressed air.	lacks maturity that other energy storage systems have.	
Potential fatal flaws to commercial viability	Satisfactory Geology	System lacks maturity that other energy storage processes have	
Staffing requirements (# full time staff members for 100 MW Facility)	2 hourly, 6 salaried	2 hourly, 6 salaried	
Performance Characteristics			
Range of power capacity (MW)	100 MW +	100 MW +	
Range of discharge time (hrs)	8 hours typical	4 hours typical	
Range of energy capacity (MWh)	800 MWh +	400 MWh +	
Average Annual Availability (% of time)	93%	Not enough data available	
Typical Plant Capacity Factor	23.7%	12%	
Expected life of equipment (years)	30	30	
Gross Plant Output (MW), Average Ambient Day	101.0	100.0	
Aux Power (MW), Average Ambient Day	1.01		
	1.0%	-	
Net Plant Output (MW), Average Ambient Day	100.0		
Net Plant Heat Rate (btu/kWhr), Average Ambient Day	4436	4436	
% of Energy Recovered From Compression	83.4%		
Net Plant On Peak Efficiency (Gas Turbine Efficiency)	76.92%	-	
Complete Plant Turn around efficiency (AC-AC efficiency) (%)	64.11%	60%	
Basis for Cost Estimates (costs are expressed in 2017 US dollars)			
EPC Cost (\$/kW)	\$1,200 - \$1,400 per kW		
Total Project Cost including Caverns (\$/kW)	\$2,000 - \$2,300 per kW	\$2,000 - \$4,000 per kW	
Cost to Solution Mine Salt Caverns	\$68 MM	Not Applicable	
Estimated fixed operations and maintenance cost (\$ per kW)	\$18.90		
Estimated variable O&M cost (excluding fuel & electric costs) (\$ per MWH)	\$2.30	\$2.0-\$2.50	

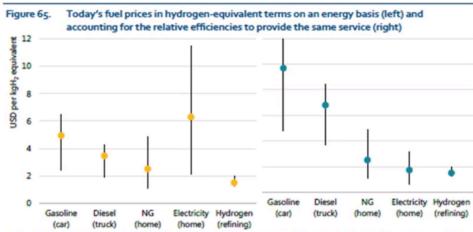
Table 20. Pumped Hydro Storage Overview


Commercial status (developmental, commercial, mature) Number of plants to date (United States) Year of first operation (United States) Typical project lead times (years) Footprint or energy density (MWh/ft^2) Dilcability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) pilcability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors Technology risks	load following, frequen vary widely from site to site. may include land use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	shaving (8 hours of daytime operation cy regulation, spinning reserve, for bo vary widely from site to site. may include land use, recreation and fisheries issues proximity te locations, roeds, additional constr short length of conveyance and high head create better project economics	Variable Speed commercial 0 (10 worldwide) 1990 (Japan) 5 licensing 5 construction Id reservoir size, for example, Bath Co n w/ 12 hours of pumping], with suffi- sth single and variable speed. variable vary widely from site to site. may include land use, recreation and fisteries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics variable speed not implemented in	ciently sized reservoirs, weekly and se e speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics nd electrical transmission may be incl	es and finer adjustments generally more impacts and long licensing period than closed loo uded in total project cost. may have more fisheries and environmental considerations th
Number of plants to date (United States) Year of first operation (United States) Typical project lead times (years) Footprint or energy density (MWh/ft^2) plicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) oplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	40 1929 5 licensing 5 construction Load shifting and peak: load following, frequen vary widely from site to site. may include and use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	mature 40 1929 5 licensing 5 construction Varies depending upon head an shaving (8 hours of daytime operation cy regulation, spinning reserve, for back vary widely from site to site. may include land use, recreation and fisheries issues proximity te locations, roeds, edditional constr a short length of conveyance and high head create better project economics	0 (10 worldwide) 1990 (Japan) 5 licensing 5 construction ad reservoir size, for example, Bath Co n w/ 12 hours of pumping), with suffle oth single and variable speed. variable vary widely from site to site. may include land use, recreation and fisitenes issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	18 1963 < 5 licensing 5 construction ounty has 700 acres for 2700 MW ciently sized reservoirs, weekly and se a speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics and electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	22 1929 > 5 licensing 5 construction assonal storage available as and finer adjustments generally more impacts and long licensing period than closed loc uded in total project cost. may have more fisheries and environmental considerations th
Number of plants to date (United States) Year of first operation (United States) Typical project lead times (years) Footprint or energy density (MWh/ft^2) plicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) oplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	40 1929 5 licensing 5 construction Load shifting and peak: load following, frequen vary widely from site to site. may include and use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	40 1929 5 licensing 5 construction Varies depending upon head ar shaving (8 hours of daytime operation cy regulation, spinning reserve, for bo vary widely from site to site. may include land use, recreation and fisheried issues proximity te locations, roeds, edditional constr a short length of conveyance and high head create better project economics	0 (10 worldwide) 1990 (Japan) 5 licensing 5 construction ad reservoir size, for example, Bath Co n w/ 12 hours of pumping), with suffle oth single and variable speed. variable vary widely from site to site. may include land use, recreation and fisitenes issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	18 1963 < 5 licensing 5 construction ounty has 700 acres for 2700 MW ciently sized reservoirs, weekly and se a speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics and electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	22 1929 > 5 licensing 5 construction assonal storage available as and finer adjustments generally more impacts and ion licensing period than closed io uded in total project cost. may have more fisheries an- environmental considerations ti
Year of first operation (United States) Typical project lead times (years) Footprint or energy density (MWh/ft^2) blicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) oplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	1929 5 licensing 5 construction Load shifting and peak load following, frequen vary widely from site to site. may include land use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	1929 5 licensing 5 construction Varies depending upon head ar shaving (8 hours of daytime operation cy regulation, spinning reserve, for be vary widely from site to site. may include land use, recreation and disheries issues proximity te locations, roeds, edditional constr short length of conveyance and high head create better project economics	1990 (Japan) 5 licensing 5 construction ad reservoir size, for example, Bath Co n w/ 12 hours of pumping), with suffli- oth single and variable speed. variable vary widely from size to site. may include land use, recreation and fisheries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	1963 < 5 licensing 5 construction bunty has 700 acres for 2700 MW ciently sized reservoirs, weekly and se a speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics and electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	1929 > 5 licensing 5 construction easonal storage available as and finer adjustments generally more impacts and lon licensing period than closed lo uded in total project cost. may have more fisheries an environmental considerations t
Typical project lead times (years) Footprint or energy density (MWh/ft^2) olicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) oplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	5 licensing 5 construction Load shifting and peak load following, frequen vary widely from site to site. may include land use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	5 licensing 5 construction Varies depending upon head ar shaving (8 hours of daytime operation cy regulation, spinning reserve, for bo vary widely from site to site, may include land use, recreation and fisheries issues proximity te locations, roeds, edditional constr short length of conveyance and high head create better project economics	5 licensing 5 construction Id reservoir size, for example, Bath Co n w/ 12 hours of pumping), with suffi- oth single and variable speed. variable vary widely from size to site. may include land use, recreation and fisheries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	< 5 licensing 5 construction ounty has 700 acres for 2700 MW clently sized reservoirs, weekly and se e speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics and electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	> 5 licensing 5 construction assonal storage available as and finer adjustments generally more impacts and lon licensing period than closed lo uded in total project cost. may have more fisheries an environmental considerations t
Footprint or energy density (MWh/ft^2) blicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) oplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	5 construction Load shifting and peak load following, frequen vary widely from site to site. may include land use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	5 construction Varies depending upon head an shaving (8 hours of daytime operation cy regulation, spinning reserve, for bo vary widely from site to site. may include land use, recreation and fisheries issues proximity te locations, roads, edditional constr short length of conveyance and high head create better project economics	5 licensing 5 construction Id reservoir size, for example, Bath Co n w/ 12 hours of pumping), with suffi- oth single and variable speed. variable vary widely from size to site. may include land use, recreation and fisheries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	5 construction ounty has 700 acres for 2700 MW clently sized reservoirs, weekly and se e speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics and electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	5 construction assonal storage available as and finer adjustments generally more impacts and lor licensing period than closed lo uded in total project cost. may have more fisheries an environmental considerations t
Footprint or energy density (MWh/ft^2) blicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) oplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	5 construction Load shifting and peak load following, frequen vary widely from site to site. may include land use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	5 construction Varies depending upon head an shaving (8 hours of daytime operation cy regulation, spinning reserve, for bo vary widely from site to site. may include land use, recreation and fisheries issues proximity te locations, roads, edditional constr short length of conveyance and high head create better project economics	5 construction d reservoir size, for example, Bath Co n w/ 12 hours of pumping), with suffi- sth single and variable speed. variable vary widely from site to site. may include land use, recreation and fisheries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	5 construction ounty has 700 acres for 2700 MW clently sized reservoirs, weekly and se e speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics and electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	5 construction assonal storage available as and finer adjustments generally more impacts and ion licensing period than closed io uded in total project cost. may have more fisheries an environmental considerations ti
Dicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) aplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	Load shifting and peak load following, frequen vary widely from site to site. may include and use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	Varies depending upon head ar shaving (8 hours of daytime operatio cy regulation, spinning reserve, for bo vary widely from site to site. may include land use, recreation and fisheries issues proximity te locations, roeds, additional constr short length of conveyance and high head create better project economics	nd reservoir size, for example, Bath Co n w/ 12 hours of pumping), with suffi- oth single and variable speed. variable vary widely from site to site. may include land use, recreation and fisteries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	unty has 700 acres for 2700 MW clently sized reservoirs, weekly and se a speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics and electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	esonal storage available es and finer adjustments generally more impacts and lon licensing period than closed lo uded in total project cost. may have more fisheries and environmental considerations ti
Dicability for long-term operation- multiple hour operation (e.g., peak shaving, sustained outages) aplicability for short-term operation- subhourly operation (e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	load following, frequen vary widely from site to site. may include land use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	shaving (8 hours of daytime operation cy regulation, spinning reserve, for bo vary widely from site to site. may include land use, recreation and fisheries issues proximity te locations, roeds, additional constr short length of conveyance and high head create better project economics	n w/ 12 hours of pumping], with suffi oth single and variable speed. variable vary widely from site to site. may include land use, recreation and fisheries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	ciently sized reservoirs, weekly and se e speed provides faster response time generally fewer impacts and shorter licensing period than open loop economics nd electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	es and finer adjustments generally more impacts and lon licensing period than closed lo uded in total project cost. may have more fisheries an environmental considerations t
(e.g., power quality applications) Potential environmental/regulatory factors Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	vary widely from site to site. may include and use, recreation and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	vary widely from site to site. may include land use, recreation and fisheries issues proximity te locations, roeds, edditional constr short length of conveyance and high head create better project economics	vary widely from site to site. may include land use, recreation and fisheries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	generally fewer impacts and shorter licensing period than open loop economics nd electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	generally more impacts and lon licensing period than closed los uded in total project cost. may have more fisheries and environmental considerations ti
Electrical transmission considerations Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	include and use, represention and fisheries issues projects may be in remo short length of conveyance and high head create better project economics tunneling, sedimentation,	te locations, roeds, additional constr short length of conveyance and high head create better project economics	include land use, recreation and fisheries issues to transmission line can affect project >230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	licensing period than open loop economics nd electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	licensing period than closed lo uded in total project cost. may have more fisheries an environmental considerations t
Required size of interconnection (kV) Vehicular access and local infrastructure considerations Geological or topographic factors	short length of conveyance and high head create better project economics tunneling, sedimentation,	te locations, roads, additional constr short length of conveyance and high head create better project economics	>230 to 500 kV preferred uction material transportation cost, a short length of conveyance and high head create better project economics	nd electrical transmission may be incl makeup water for the reservoirs must be considered (but generally	may have more fisheries and environmental considerations th
Vehicular access and local infrastructure considerations Geological or topographic factors	short length of conveyance and high head create better project economics tunneling, sedimentation,	short length of conveyance and high head create better project economics	uction material transportation cost, a short length of conveyance and high head create better project economics	makeup water for the reservoirs must be considered (but generally	may have more fisheries and environmental considerations th
Geological or topographic factors	short length of conveyance and high head create better project economics tunneling, sedimentation,	short length of conveyance and high head create better project economics	short length of conveyance and high head create better project economics	makeup water for the reservoirs must be considered (but generally	may have more fisheries and environmental considerations th
	head create better project economics tunneling, sedimentation,	head create better project economics	head create better project economics	must be considered (but generally	environmental considerations th
Technology risks			variable speed pat, implemented in		a closed loop system.
	seismology	generating technology is proven	US, but has been proven internationally	tunneling, seismology, makeup water for reservoirs	tunneling, sedimentation, seismology
Potential fatal flaws to commercial viability	environmental fatal flaws, seismology, project financing	environmental fatal flaws, seismology, project financing	environmental fatal flaws, seismology, project financing	environmental fatal flaws, seismology, project financing	environmental fatal flaws, seismology, project financing
Staffing requirements (# full time staff members for 1000 MW facility)		15 t	o 25 depending on asset portfolio in r	egion	
		Performance Characteristics			
Range of power capacity of plant (MW)	9 - 2800	9 - 2800	85 - 600 (internationally)	28 - 2700	9 - 2000
Range of discharge time (hrs)	5 - 100+	5 - 100+	same capacity as single speed (NA in US)	5 - 100+	9 - 100+
Range of energy capacity (MWhr)	87-370,000	87-370,000	same capacity as single speed (NA in US)	247-190,000	87-370,000
Annual forced outage rate (% of time)			0-3%		
Expected life of generating equipment (years)			20+		
Expected life of project (years)			50+		
Expected life of project (number of cycles)			>10 cycles/day/year for 50 years		
Parasitic load (for a 1000 MW plant) (MWhr/year)			5 MW		
	75 - 80%	75 - 80%	80 - 82%	75 - 80%	75 - 80%
Range of capital cost (S par kW/)		the expressed in 20			
	-	1200			
ajor Maintence Costs (for a 1,000 MW project at year 20)					
Replacement frequency (years)			m and the dams are not on a main-st	em river.	
	(# full time staff members for 1000 MW facility) Range of power capacity of plant (MW) Range of discharge time (hrs) Range of energy capacity (MWhr) Annual forced outage rate (% of time) Expected life of generating equipment (years) Expected life of project (years) Expected life of project (years) Parasitic load (for a 1000 MW plant) (MWhr/year) Turn around efficiency (AC-AC efficiency) (%) Range of capital cost (\$ per kW) Range of operations and maintenance cost (\$ per kW-yr) Biannual Outage Costs (for a 1,000 MW project) Iajor Maintence Costs (for a 1,000 MW project at year 20)	(# full time staff members for 1000 MW facility) Range of power capacity of plant (MW) 9 - 2800 Range of discharge time (hrs) 5 - 100+ Range of energy capacity (MWhr) 87-370,000 Annual forced outage rate (% of time) Expected life of generating equipment (years) Expected life of project (years) Expected life of project (years) Parasitic load (for a 1000 MW plant) (MWhr/year) Turn around efficiency (AC-AC efficiency) (%) 75 - 80% Basis for Cost Range of capital cost (\$ per kW) Range of capital cost (\$ per kW) Biannual Outage Costs (for a 1,000 MW project) Iajor Maintence Costs (for a 1,000 MW project at year 20) Replacement frequency (years)	(# full time staff members for 1000 MW facility) Performance Characteristics Range of power capacity of plant (MW) 9 - 2800 9 - 2800 Range of discharge time (hrs) 5 - 100+ 5 - 100+ Range of energy capacity (MWhr) 87-370,000 87-370,000 Annual forced outage rate (% of time) Expected life of project (years) Expected life of project (years) Expected life of project (years) Expected life of project (years) 75 - 80% Parasitic load (for a 1000 MW plant) (MWhr/year) 75 - 80% 75 - 80% Turn around efficiency (AC-AC efficiency) (%) 75 - 80% 75 - 80% Basis for Cost Estimates (costs are expressed in 20 Range of capital cost (\$ per kW) Range of capital cost (\$ per kW) Range of capital cost (for a 1,000 MW project) Basis for Cost Estimates (costs are expressed in 20 Range of a 1,000 MW project at year 20) Replacement frequency (years) Replacement frequency (years) Replacement frequency (years) Range of capital cost (for a 1,000 MW project at year 20)	(# full time staff members for 1000 MW facility) Is to 25 depending on asset partfolio in r Depending on asset partfolio in r Range of power capacity of plant (MW) 9 - 2800 85 - 600 (internationally) Range of discharge time (hrs) S - 100+ S - 100+ S - 600 (internationally) Range of energy capacity (MWhr) 87 - 370,000 87 - 370,000 87 - 370,000 same capacity as single speed (NA in US) Annual forced outage rate (% of time) O - 3% Expected life of project (Wears) 20+ Expected life of project (years) S - 100+ S - 100+ Im US) S - 100+ Im US) Annual forced outage rate (% of time) O - 3% Expected life of project (wears) 20+ Expected life of project (years) > 200 Parasitic load (for a 1000 MW plant) (MWhr/year) T - 30% T - 300 cycles/day/year for 50 years Parage of operations and maintenance cost (S per kW) S - 60% S - 60% S - 50% Range of capital cost (S per kW) S - 50% <t< td=""><td>(# full time staff members for 1000 MW facility) Performance Characteristics Range of power capacity of plant (MW) 9 - 2800 9 - 2800 85 - 600 (internationally) 28 - 2700 Range of discharge time (hrs) 5 - 100+ same capacity as single speed (NA in US) 5 - 100+ same capacity as single speed (NA in US) 5 - 100+ Range of energy capacity (MWhr) 87-370,000 87-370,000 87-370,000 same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 Same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 Same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 97-380 90-382 Expected life of project (pars) 2000 2000 5000 90-382 90-382 90-382 90-382 90-382</td></t<>	(# full time staff members for 1000 MW facility) Performance Characteristics Range of power capacity of plant (MW) 9 - 2800 9 - 2800 85 - 600 (internationally) 28 - 2700 Range of discharge time (hrs) 5 - 100+ same capacity as single speed (NA in US) 5 - 100+ same capacity as single speed (NA in US) 5 - 100+ Range of energy capacity (MWhr) 87-370,000 87-370,000 87-370,000 same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 Same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 Same capacity as single speed (NA in US) 247-190,000 Annual forced outage rate (% of time) 2000 87-370,000 87-370,000 87-370,000 97-380 90-382 Expected life of project (pars) 2000 2000 5000 90-382 90-382 90-382 90-382 90-382

Variable Speed Pump-turbines

Variable speed pump-turbines have been used since the early to mid-1990's in Japan and late 1990s in Europe. They are being increasing considered during project development in Europe and Asia due to a high percentage of renewable energy penetration. In California, three large pumped storage projects in development are considering variable speed technology almost exclusively due to the growing need for detrimental reserves at night, enabling greater penetration of variable renewable energy resources. Although the technology has been in place since the 1990's, major equipment vendors are continuously redesigning the equipment to improve performance.

n a conventional, single speed pump-turbine, the magnetic field of the stator and the magnetic field of the rotor always rotate with the same speed and the two are coupled. In a variable speed machine, those magnetic fields are decoupled. Either the stator field is be decoupled from the grid frequency using a frequency converter between the grid and the stator winding, or the rotor field is decoupled from the rotor. Table 15 provides a summary comparing the operational characteristics and advantages/disadvantages of single and variable-speed turbine units for an example project. Actual benefits will vary depending on specific site characteristics. Because of the multiple advantages, variable-speed units have been discussed in this report.

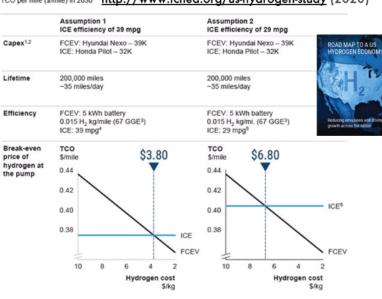

2030 TCO for Class 8 trucks shows Fuel Cell drivetrains are least cost Zero Emission solution, using 100% renewable hydrogen fuel

Selected powertrains (diesel, fuel cell and battery) are highlighted. TCO is calculated over 6 years, assuming 130,000 km driven p.a Source: various, Shell Analysis 2020

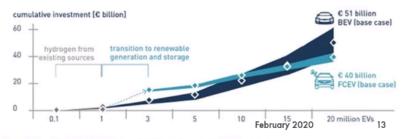
Viability of Hydrogen Economy?

Price paid for energy services

Notes: Average prices paid in IEA countries plus China. Prices include taxes and tariffs. Fuel cell and motor drivetrain assumed to be 96% more efficient than an internal combustion engine. Heat pump assumed to be 3.6 times more efficient than heating with hydrogen. NG = natural gas.


Source: IEA (2018a), World Energy Prices 2018.

After accounting for the efficiency of converting hydrogen to motive power, the price paid by car drivers for gasoline is equivalent to nearly USD $10/kgH_{32}$ which is achievable for delivered hydrogen costs in many regions by 2030.


IEA (2019). https://www.iea.org/reports/the-future-of-hydrogen

H2 Mobility Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles, Martin Robinius, Jochen Linßen, Thomas Grube, Markus Reuß, Peter Stenzel, Konstantinos Syranidis, Patrick Kuckertz and Detlef Stolten, Energie & Umwelt / Energy & Environment Band / Volume 408 ISBN 978-3-95806-295-5: Forschungszentrum Jülich Research Centre and the H2 Mobility

Exhibit 38 SUV TCO analysis TCO per mile (\$/mile) in 2030 http://www.fchea.org/us-hydrogen-study (2020)

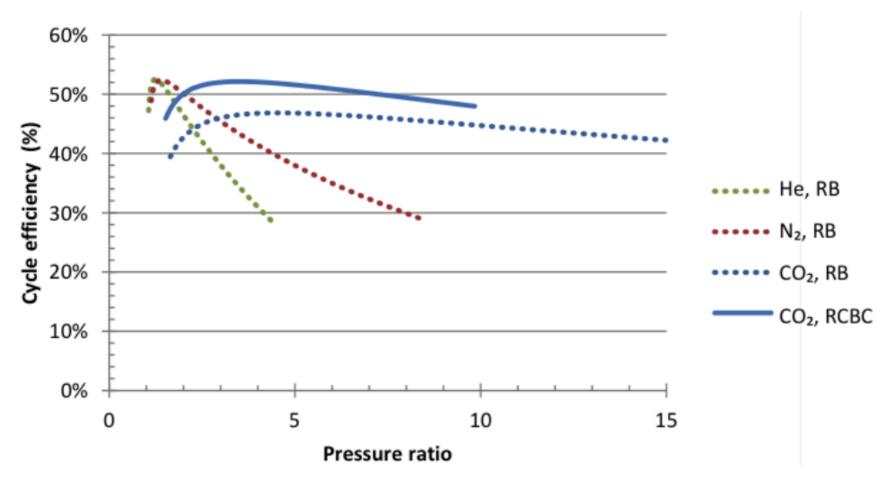
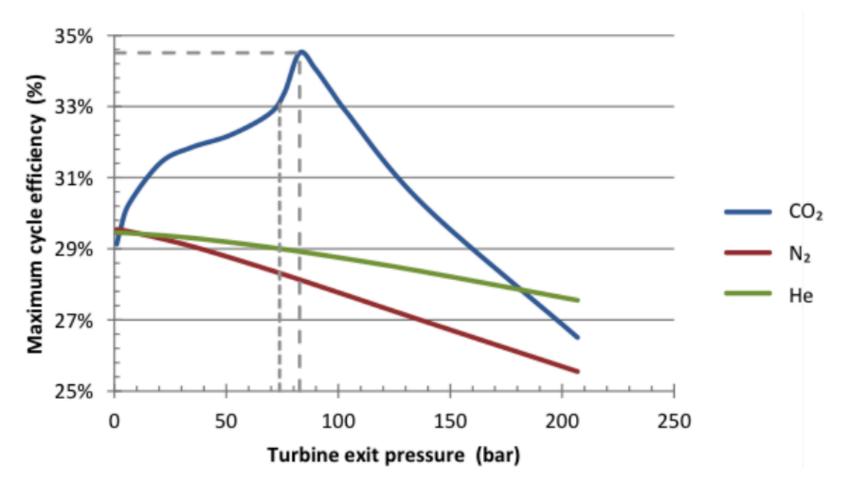
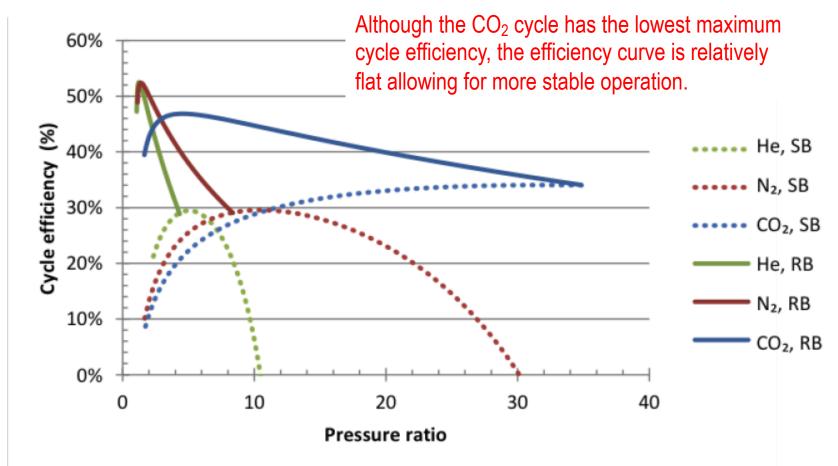


Figure 4.R.9 Recompression Brayton Cycle Efficiency.¹⁷ Plot shows cycle efficiency versus pressure ratio for RCBC (solid line) and Recuperated Brayton Cycle (dashed lines, RB).


Credit: NETL

High exit pressures require stronger materials while higher working densities dramatically decrease the size of the turbine


Figure 4.R.3 Maximum Simple Brayton Cycle Efficiency varies strongly with turbine exit pressure for CO₂. Plot of cycle efficiency versus turbine exit pressure ratio for three different working fluids and turbomachinery isentropic efficiencies of 0.9.⁹

Credit: NETL

Figure 4.R.6 Recuperated Brayton Cycle Efficiency. Plot of cycle efficiency versus pressure ratio for recuperated Brayton cycle (solid lines, RB) with three working fluids compared to the simple Brayton cycle (dashed lines, SB).¹²

Credit: NETL

