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Abstract
The transportation sector is the largest contributor to CO2 emissions and a major source of criteria
air pollutants in the United States. The impact of climate change and that of air pollution differ in
space and time, but spatially-explicit, systematic evaluations of the effectiveness of alternative fuels
and advanced vehicle technologies in mitigating both climate change and air pollution are lacking.
In this work, we estimate the life cycle monetized damages due to greenhouse gas emissions and
criteria air pollutant emissions for different types of passenger-moving vehicles in the United
States. We find substantial spatial variability in the monetized damages for all fuel-vehicle
technologies studied. None of the fuel-vehicle technologies leads simultaneously to the lowest
climate change damages and the lowest air pollution damages across all U.S. counties. Instead, the
fuel-vehicle technology that best mitigates climate change in one region is different from that for
the best air quality (i.e. the trade-off between decarbonization and air pollution mitigation). For
example, for the state of Pennsylvania, battery-electric cars lead to the lowest
population-weighted-average climate change damages (a climate change damage of 0.87 cent/mile
and an air pollution damage of 1.71 cent/mile). In contrast, gasoline hybrid-electric cars lead to the
lowest population-weighted-average air pollution damages (a climate change damage of 0.92
cent/mile and an air pollution damage of 0.77 cent/mile). Vehicle electrification has great potential
to reduce climate change damages but may increase air pollution damages substantially in regions
with high shares of coal-fired power plants compared to conventional vehicles. However, clean
electricity grid could help battery electric vehicles to achieve low damages in both climate change
and air pollution.

1. Introduction

The transportation sector is currently the most sig-
nificant contributor to CO2 emissions in the United
States (U.S.) (U.S. Energy Information Administra-
tion (EIA) 2017). Similarly, the health and envir-
onmental consequences associated with the trans-
portation sector are of critical importance, since
the transportation sector accounts for more than
half of carbon monoxide (CO) and nitrogen oxides
(NOx) emissions in the U.S., as well as nearly a
quarter of volatile organic compounds (VOCs), and
6% of primary PM2.5 (particulate matter less than

2.5 micrometers in diameter) emissions (Davis et al
2016). Increased emissions and concentrations of
greenhouse gases and criteria air pollutants are of
concern to society and policymakers, as they lead to
poor urban air quality, increasing hazards of infra-
structure, and elevated risks ofmortality andmorbid-
ity in exposed populations (Pope et al 2002, Krewski
et al 2009, Lepeule et al 2012). However, the social
impacts of these pollutants are not the same across
pollutant type, space, or time. Greenhouse gases, for
example, have global dispersion, stay in the atmo-
sphere for decades to centuries, and their impacts
are the same regardless of the location of the source
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(Intergovernmental Panel onClimate Change (IPCC)
2014). Criteria air pollutants, on the other hand,
have a much shorter lifespan, and their consequences
depend on the location of the source (Heo et al 2016a,
Gilmore et al 2019). Emissions of criteria air pol-
lutants result in higher concentrations of PM2.5 and
ground-level ozone, which lead to substantial health
consequences for the exposed population (Heo et al
2016a, Gilmore et al 2019).

The impact of air pollution and that of climate
change differ in space (local versus global) and time
(short-term versus long-term). This divergent nature
of air pollution and climate change has led to dif-
ferent perceptions, rates of technology adoption,
and effectiveness of technology options and policy
actions to tackle air pollution and climate change
(Maione et al 2016, Sergi et al 2018). Whereas efforts
to clean the polluted air in the United States and
many other developed countries have been hailed
as victories (U.S. Environmental Protection Agency
(EPA) 2011, Carnell et al 2019), efforts to mitigate
climate change have yet to make substantial progress
(Peters et al 2017, van Renssen 2018). One promising
way to increase the effectiveness of climate change
actions is to identify co-benefits (such as health bene-
fit from the reduction of air pollution) which are
achieved by technology options or policy actions that
are designed initially to tackle climate change (Bain
et al 2016, Chang et al 2017, Deng et al 2017). In
particular, health co-benefits have been identified
for carbon mitigation strategies and policies in the
transportation sector (Shindell et al 2011, Balbus et al
2014, Shaw et al 2014, Thompson et al 2014), in the
electricity sector (Balbus et al 2014, Thompson et al
2014, Driscoll et al 2015), and across the economy
(Zapata et al 2013, Thompson et al 2014, Buonocore
et al 2018).

Alternative fuels and advanced vehicle technolo-
gies have been widely regarded as a potential solu-
tion for sustainable transportationwith negligible cli-
mate change and air pollution impacts (U.S. National
Research Council (NRC) 2010, Creutzig et al 2015,
Gearhart 2016). However, quantifications of climate
change or air pollution effects of alternative fuels
and advanced vehicle technologies are only available
recently and limited in scope. In 2010, a U.S. National
Academies report estimated that air emissions from
on-road vehicles resulted in a cost of ~$110 billion
for climate change and air pollution damages in the
U.S. (U.S. National Research Council (NRC) 2010).
Around the same time, several studies have examined
climate change damages or air pollution damages
caused by alternative fuels and advanced vehicle tech-
nologies such as biofuels, compressed natural gas
(CNG) vehicles, diesel vehicles, plug-in hybrid elec-
tric vehicles, and battery electricity vehicles, and
hydrogen electric vehicles (Ogden et al 2004, Jac-
obson et al 2005, Jacobson 2007, Keefe et al 2008,
Hill et al 2009, Sun et al 2010, Michalek et al 2011,

Tessum et al 2014, Luk et al 2015, Barrett et al 2015,
Tamayao et al 2015, Tong et al 2015a, 2015b, 2017,
Weis et al 2015, 2016, Yuksel et al 2016, Holland et al
2016a, 2016b).

For a detailed summary of existing literature
in terms of fuel-vehicle technologies considered,
data sources for emissions inventories, details about
air quality modeling (e.g. species, scope, end-
points), and climate change modeling (species
and endpoints), we refer the reader to table S1 in
the supplementary document (available online at
stacks.iop.org/ERL/15/074046/mmedia). In general,
these studies find that only a few fuel-vehicle techno-
logies, including hybrid-electric vehicles and battery
electric vehicles powered by dedicated natural gas or
renewable electricity sources, could reduce climate
change damages or air pollution damages compared
to incumbent petroleum fuels. However, none of
these studies has explicitly quantified the effective-
ness of alternative fuels and advanced vehicle techno-
logies in mitigating climate change and air pollution
simultaneously in a spatially-explicit manner.

Except for a few recent studies (Hill et al 2009,
Tessum et al 2014, Barrett et al 2015, Holland et al
2016a), most existing studies ignored the spatial dis-
tributions of air pollution damage. This omission
could lead to biased findings because the air pollution
impact of criteria air pollutants depends critically on
where they are emitted and, subsequently, how many
people are exposed. As a result, although many stud-
ies estimated and compared air pollution damages
and climate change damages for certain fuel-vehicle
technologies at the national level (i.e. using a repres-
entative estimate), quantification and comparison of
air pollution damages and climate change damages at
the appropriate spatial context (local versus global) is
lacking.

As national and local decision-makers may care
about different types of negative consequences, it
becomes increasingly important to understand if
one particular type or a combination of alternative
fuels and advanced vehicle technologies could deliver
health benefits as well as climate change benefits com-
pared to the incumbent petroleum fuels. This is par-
ticularly relevant since vehicles rely on the refuel-
ing or charging infrastructure to support their use
(Tong et al 2019). If different alternative fuels or
advanced vehicle technologies are favored under dif-
ferent policy goals, it is hard to form joint forces from
all the stakeholders and end-use consumers.

To fill this knowledge gap, we present a system-
atic, spatially-explicit assessment of environmental
externalities caused by alternative fuels and advanced
vehicle technologies in the United States, using a
coupledmodeling framework linking life cycle assess-
ment and reduced-form air quality models. We study
three typical types of passenger-moving vehicles, pas-
senger cars, SUVs, and transit buses. We include
SUVs because their sale has grown to be comparable
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Table 1. Life cycle stages and fuel-vehicle technologies considered.

Stage Gasoline Diesel CNG Grid electricity

Primary energy
extraction

Crude oil production and transportation1 Natural gas produc-
tion, processing, and
transmission1

Fossil fuels (coal,
natural gas, crude
oil) production and
transportation1

Oil refining1 Natural gas
compression2

Electricity
generation2Fuel production and

transportation Petroleum product transportation1 On-site production at
refueling stations. 2

Transmission & dis-
tribution lines (line
losses considered)2

Vehicle technology Conventional ICEVs and HEVs.3 ICEVs3 BEVs3

Vehicle type passenger car, SUV transit bus passenger car, SUV,
transit bus

passenger car, SUV,
transit bus

Notes: CNG= compressed natural gas, ICEV= internal combustion engine vehicle, HEV= hybrid electric vehicle, BEV= battery

electric vehicle, SUV= sports utility vehicle; 1 = Continental U.S. estimate; 2 = NERC region estimate; 3 = county estimate.

to that of passenger cars over the last two decades
(Davis et al 2016). Although transit buses represent a
small share of vehicle fleets, they are essentialmobility
service providers in urban areas and are early adopters
for alternative fuel and advanced vehicle technolo-
gies (Tong et al 2017).We include four transportation
fuels—gasoline, diesel, CNG, and grid electricity—
which are paired with three vehicle technologies—
internal combustion engine vehicles (ICEVs), hybrid
electric vehicles (HEVs), and battery electric vehicles
(BEVs)—based on fuel properties and market avail-
ability.

2. Methods

2.1. Life cycle scope, boundary, and functional unit
Table 1 summarizes the life cycle stages for the fuel-
vehicle technologies considered. The life cycle bound-
ary includes primary energy extraction, fuel produc-
tion and transportation, and vehicle use. We also
include the manufacturing of lithium-ion batter-
ies for HEVs and BEVs following recent literature
(Michalek et al 2011, Tessum et al 2014). We assume
all other vehicle components are similar across vehicle
technologies for a given vehicle type. The functional
unit is one vehiclemile traveled (VMT), and the study
reference year is 2014 for which we have the complete
data.

2.2. Marginal damage approach
We use a marginal damage approach to estimate
climate change monetized damages associated with
greenhouse gases (CO2, CH4, N2O) and health and
environmental monetized damages caused by criteria
air pollutants (SO2, NOx, CO, PM2.5, and VOCs). We
assume that an incremental VMT is small enough to
be treated as marginal so that the induced climate
change and air pollution damages are calculated as the
product of emissions factors and the marginal dam-
ages for the emissions species for the same location
and height (U.S. National Research Council (NRC)
2010). Themarginal damages of amass of greenhouse
gas are the same regardless of source location and

height. However, the marginal damages of criteria
air pollutants are sensitive to where they are emit-
ted. We then attribute the monetized costs associated
with each fuel-vehicle technology to one vehicle mile.
Themetric for comparison is monetized damages per
vehicle mile. All monetary values are converted to
the 2010 dollar using the consumer price index (CPI)
(U.S. Bureau of Labor Statistics 2016).

We use two state-of-the-art reduced-form air
quality models (the AP2 model and the EASIUR
model) (Heo et al 2016a, Gilmore et al 2019, Muller
2011) to estimate marginal damages for criteria air
pollutants. We present the results with the EASIUR
model in the main text and leave the results with the
AP2 model in the supplementary document (section
4.4). Critical economic assumptions in our analysis
include a statistical life value of $2010 8 million and
a social cost of carbon of $200736/t CO2e. Given the
uncertainty and discussions in the literature regard-
ing these values, we perform a sensitivity analysis to
understand the implication of these assumptions on
our results.

2.3. Greenhouse gas (GHG) emissions and damages
We expand the GHG emissions inventories as repor-
ted in Tong et al (Tong et al 2015a, 2015b) by
considering upstream and on-site GHG emissions
for electricity generation for different NERC (North
American Electric Reliability Corporation) regions
(see the supplementary document for region boundar-
ies and details on the upstream emissions). In partic-
ular, a 1.3% methane leakage in the natural gas sup-
ply chain was considered (Tong et al 2015a, 2015b).
We use the 100-year global warming potential (GWP)
from the IPCC (Intergovernmental Panel on Climate
Change (IPCC) 2014) to convert non-CO2 emissions
to CO2-equivalent emissions (36 for fossil fuel meth-
ane and 298 for fossil fuel N2O).We use the social cost
of carbon ($2007 36/t CO2e) to monetize the damages
associated with GHG emissions (Interagency Work-
ing Group on Social Cost of Carbon United States
Government 2015). We assess the sensitivity of our
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results for a range of SCCs from $2007 0/t CO2 to $2007
105/t CO2.

2.4. Criteria air pollutant (CAP) emissions and
damages
The life cycle CAP emissions and the resulting dam-
ages estimates include those from primary energy
extraction, fuel production, vehicle operation, and
battery manufacturing.

2.4.1. Primary energy extraction emissions and
damages
We calculate the national average air pollution dam-
ages producing primary energy products (coal, nat-
ural gas, or crude oil) in the U.S. following the
approach outlined in (Jaramillo and Muller 2016).
We aggregate the county-level criteria air pollutant
emissions for these energy sub-sectors from the raw
emissions data in the National Emissions Inventory
(NEI) (U.S. Environmental Protection Agency (EPA)
2016b) based on the source classification code data-
base developed in (Tschofen et al 2019). We mul-
tiply criteria air pollutant emissions and the marginal
damage estimates for the same species at the same
county to calculate the total damages for energy activ-
ities, which are then divided by total energy produc-
tion to quantify the damages per energy unit. For
primary energy extraction, we use national weighted-
average damage in the analysis. Although domestic
production of coal and natural gas accounts for the
largest share of supply of these fuels, the U.S. con-
tinues to import crude oil (U.S. Energy Information
Administration (EIA) 2016c) and, like previous stud-
ies (Michalek et al 2011, Weis et al 2016), we assume
that imported crude oil has the same air pollution
damages as U.S. crude oil. We account for air pol-
lution damages due to electricity used for powering
crude oil pipelines and natural gas pipelines using
pipelines’ electricity intensity data (Hooker 1981,
Davis et al 2016) and the electricity damages calcu-
lated in this paper.

2.4.2. Fuel production emissions and damages
We construct emissions inventories of the four trans-
portation fuels, gasoline, diesel, grid electricity, and
CNG, as follows.

We use emissions data from the National Emis-
sions Inventory (NEI) at the county level to estim-
ate air pollution damages associated with the pro-
duction of gasoline and diesel. These emissions are
normalized to oil refinery capacity (barrel of crude
oil inputs) before being converted to the actual out-
puts of petroleum products (gasoline and diesel)
using the energy allocation method (Wang et al
2004, U.S. Energy Information Administration (EIA)
2016b, 2016c).

For CNG, we assume compression of natural gas
takes place at refueling stations. Thus, compressors
use the electricity from the NERC region in which

they are located. The energy efficiency of the com-
pression process is 96% (Tong et al 2015a, 2015b).

We model GHG and CAP emissions for the U.S.
electricity grid in the year 2014. To explore the impact
of the evolving electricity grid, we also model a hypo-
thetical case ‘alternative electricity grid’ in which
coal-fired and oil-fired power plants in the 2014 elec-
tricity grid are replaced by new natural gas combined
cycle power plants at the same location and for the
same net generation. For both electricity grids, we
use NERC regions as independent geographical units
of analysis (U.S. Environmental Protection Agency
(EPA) 2015). In the supplementary document, section
2, we include a map of NERC regions for the read-
ers’ reference. We account for line losses using U.S.
EPA’s eGRID data (U.S. Environmental Protection
Agency (EPA) 2015), and for battery-electric vehicles,
we assume a vehicle charging efficiency of 86.5%
(Tong et al 2015a).

To calculate climate change damages and air pol-
lutant damages for electricity generation, we use
data from U.S. EPA’s Continuous Emissions Monit-
oring System (CEMS) (U.S. Environmental Protec-
tion Agency (EPA) 2016a) (net electricity generation,
CO2, SO2 and NOx emissions for fossil fuel power
plants) and U.S. EPA’s NEI for PM2.5 emissions. We
calculate the air pollution damages from each elec-
tric generation units (EGU) bymultiplying emissions
and their respective county-level marginal damages.
To calculate the weighted-average damages associ-
ated with the average electricity generation, we sum
up the individually-calculated damages for EGUs in
each NERC region, which are then divided by the
net electricity generation (for the year 2014) in each
NERC region. We compile U.S. EIA’s Form-923 (U.S.
Energy Information Administration (EIA) 2016a) for
net generation data for non-fossil fuel power plants,
which is not included in U.S. EPA’s CEMS.

In the supplementary document, we consider three
additional electricity grid scenarios for 2014 electri-
city grid to understand the likely impacts of electric
vehicle charging: (1) the average electricity generation
from all fossil fuel power plants (‘average fossil-fuel
electricity’); (2)marginal fossil fuel electricity that has
the lowest combined air pollution and climate change
damages for an hour (‘cleanest marginal fossil fuel
electricity’), and (3) marginal fossil fuel electricity
that has the highest combined damages for an hour
(‘dirtiest marginal fossil fuel electricity’).

Data and estimates for net generation, emissions
factor, and climate change and air pollution damages
associated with electricity generation are available in
the supplementary document (section 3.3).

2.4.3. Vehicle operation
Emissions come directly from the combustion of
fossil fuels as well as tire and brake wear during
vehicle operation. For passenger cars and SUVs, we

4



Environ. Res. Lett. 15 (2020) 074046 F Tong and I M L Azevedo

Table 2. Comparison of reduced-form air quality models.

Model Data Year Approach
Spatial res-
olution

Temporal
resolution Pollutants Damage endpoints

AP2 Emissions:
2011; Popu-
lation: 2011

Source-receptor
matrix and dam-
age functions.

County
centroid (3109
counties)

Annual average PM2.5, SOx,
NOx, NH3,
VOC

Health (short-term and
long-term mortality and
morbidity) and environ-
mental impacts due to
primary and secondary
PM2.5 and ozone.

EASIUR Emissions:
2005; Popu-
lation: 2010

Reduced-form
chemical trans-
port model and
damage functions.

Grid cell size of
36 km× 36 km
(148∗112 cells)

Seasonal and
annual average

PM2.5, SOx,
NOx, NH3

Health impacts (long-
term mortality) due to
primary and secondary
PM2.5.

use the GREET model (ANL 2019) for vehicle opera-
tion emissions. For transit buses, we use chassis emis-
sions tests of CO, NOx, and VOC from the Altoona
Bus Research & Testing Center (ABTRC) reports
(Altoona Bus Research and Testing Center 2016) and
use the GREET model for PM2.5 and SO2 emissions.
Transit buses tested followed U.S. EPA’s 2010 emis-
sions standards for heavy-duty engines (U.S. Envir-
onmental Protection Agency (EPA) 2001). Besides,
we include low-NOx CNG transit buses (whose NOx

emissions are 1/10 of those from a conventional diesel
bus) to account for the 2015 California Optional
Low NOx Standard (California Air Resources Board
(CARB) 2013). Our assumptions on transit bus’s
vehicle operation emissions are in agreement with the
GREET model (section 3.4 in the supplementary doc-
ument).

The vehicle fuel efficiency determines the amount
of fuel used per mile. We use the fuel economy
assumptions from Tong et al (2015a, 2015b). We also
rely on Tong et al (2015a, 2015b) for vehicle mileage,
battery size, and replacement (for HEVs and BEVs
only) assumptions. While outside the scope of this
work, other factors, such as temperature and driving
profiles, may also affect the overall damages associ-
ated with the operation of BEVs as discussed in (Weis
et al 2016) and (Yuksel et al 2016).

2.4.4. Battery manufacturing
We use the literature estimates for the air pollution
damages associated with battery manufacturing. In
particular, the estimated damages between the two
literature (Michalek et al 2011, Tessum et al 2014)
differed by a factor of three. While the two sources
used similar emissions inventories (GREET model),
they assumed different locations of production pro-
cesses and, as a result, found different air pollution
damages. We assume an $8.68 kWh−1 damage (the
lower estimate) from the more recent source (Tes-
sum et al 2014) in the baseline analysis, and we per-
form sensitivity analysis with the alternative source
(Michalek et al 2011). Battery manufacturing dam-
ages are allocated to vehicle miles traveled with the
consideration of vehicle lifetime mileage, battery size,

and number of batteries per vehicle lifetime (Section
3.4.2 in the supplementary document).

2.4.5. Marginal damages of air pollutants
Weuse the AP2model (Muller andMendelsohn 2007,
Muller 2011) and the EASIUR model (Heo et al
2016a, 2016b) to estimate the marginal damages of
air pollutants. Both models use a damage function
approach and use similar concentration-response
relationships for PM2.5 (Pope et al 2002, Krewski
et al 2009). A key modeling difference is that the
AP2 model used a source-receptor matrix framework
derived from a Gaussian Plume model, whereas the
EASIUR model used a regression method to obtain
reduced-form outputs from a tagged chemical trans-
port model (Gilmore et al 2019). The models also
differ in baseline emissions inventory, baseline pop-
ulation data, spatial and temporal resolutions, pol-
lutants considered, and damage endpoints assumed
(table 2). As a result, there are significant differences
in the spatial distributions of their respective mar-
ginal damage estimates (see (Heo et al 2016a) and
(Gilmore et al 2019) for details). Ongoing work aims
to resolve the mentioned differences between the two
models.

The EASIUR and AP2 models estimate differ-
ent marginal damages for ground-level and elevated
emissions sources. We use the elevated-level mar-
ginal damages for fossil fuel power plants and the
ground-level marginal damages for all other emis-
sions sources.

Carbonmonoxide is known to affect cardiovascu-
lar health and leads to secondary effects from ground-
level ozone (Michalek et al 2011), but neither social
cost model includes these effects. Thus, we use the
national-average CO damage estimate from (Mat-
thews and Lave 2000) of $520/metric ton CO in $1992,
which after inflation adjustment is $2010808/metric
ton CO.

We use U.S. EPA’s recommended value of a
statistical life (VSL), $2010 8 million (U.S. Envir-
onmental Protection Agency (EPA) 2014). In
the sensitivity analysis, we vary this value from
$0 to $16 million (Viscusi and Aldy 2003, U.S.
Environmental Protection Agency 2010). We
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Figure 1. Distributions of life cycle climate change and air pollution damages for fuel-vehicle technologies across U.S. counties for
passenger cars (left panel), SUVs (middle panel), and transit buses (right panel). We estimate the life cycle damages for fuel-vehicle
technologies in each county under two assumed electricity grids: top panel—those based on the 2014 electricity grid and, bottom
panel—those based on an alternative electricity grid (assuming new natural gas combined cycle (NGCC) power plants replace
existing coal-fired and oil-fired power plants at the corresponding locations). The figure plots the frequency distributions of the
estimated life cycle damages weighted by county population. Numerical details are available in the Supplementary Data File.

Table 3.Weighted-average life cycle damages of fuel-vehicle technologies for the Contiguous U.S. (weighted by county population)
assuming the average electricity in 2014. (Unit: cent per vehicle mile traveled).

Vehicle Technology Climate change Air pollution Climate change and air pollution

Gasoline 1.25 0.65 1.90
Gasoline hybrid-electric 0.92 0.60 1.52
CNG 1.18 0.70 1.88

Passenger car

Battery-electric 0.78 0.91 1.69
Gasoline 1.65 0.90 2.55
Gasoline hybrid-electric 1.25 0.84 2.09
CNG 1.54 0.97 2.51

SUV

Battery-electric 1.14 1.36 2.50
Diesel 11.74 2.93 14.67
Diesel hybrid-electric 9.79 2.72 12.51
CNG 11.39 5.62 17.01
CNG low-NOx 11.39 5.05 16.44

Transit bus

Battery-electric 5.82 6.16 11.99

assume the air pollution damages are propor-
tional to VSL, but the VSL does not impact climate
change damages.

For the results shown in figure 1, table 3, and fig-
ure 4, we use the population as a proxy for vehicle
miles traveled in U.S. counties for passenger-moving

vehicles considered in this paper. County population
data is available from the U.S. Census Bureau
(National Bureau of Economic Research 2017). The
formula to calculate the weight-averaged damages
is available in the supplementary document (section
3.5).

6



Environ. Res. Lett. 15 (2020) 074046 F Tong and I M L Azevedo

Figure 2. Fuel-vehicle technologies that have the lowest monetized damages in each county for passenger cars (top panel), SUVs
(middle panel), and transit buses (bottom panel). The left, middle, and right columns correspond to different policy goals:
climate change only, air pollution only, and climate change and air pollution. Color shades represent relative differences in
damage estimates across technologies—for instance, a 100% relative difference means that all the other fuel-vehicle technologies
lead to 100% higher damages than the shown technology for any county. We use U.S. EPA’s emissions data, the EASIUR model,
and assume the average electricity in each electricity grid region. This figure shows results for the 2014 electricity grid. Results for
the alternative electricity grid are available in the supplementary document. Numerical details are available in the Supplementary
Data File.

3. Results

3.1. Spatial variability in life cycle damages
We estimate the life cycle climate change damages and
air pollution damages for fuel-vehicle technologies
used in U.S. counties. In the discussion below, ‘dam-
ages’ or ‘life cycle damages’ refer to ‘life cycle air pollu-
tion damages and life cycle climate change damages’,
unless otherwise specified. In figure 1, we present
the frequency plots (weighted by county population)
of county-level damages for each fuel-vehicle tech-
nology option considered for passenger cars, SUVs,
and transit buses. The estimated life cycle damages
show significant heterogeneity across U.S. counties.
For instance, the most serious damage is twice as sig-
nificant as the lowest damage of driving the same gas-
oline car across counties. However, no matter where
the vehicle is driven, the damages are no smaller than
1.5 cents per vehicle mile traveled. For population-
weighted-average damages for the Contiguous U.S.,
gasoline hybrid-electric vehicles lead to the low-
est damages for passenger cars and SUVs, whereas
battery-electric buses achieve the lowest damages
for transit buses (table 3). Weighted-average damage
estimates for U.S. states and electricity grid regions
are available in the Supplementary Data File.

Hybrid-electric vehicles have lower damages than
conventional gasoline/diesel vehicles (baseline tech-
nologies) across all counties. This is because hybrid-
electric vehicles operate more energy-efficiently, thus
consuming fewer fuels and leading to lower energy
use and emissions from the upstream activities. CNG
vehicles or battery-electric vehicles do not always
lead to damage reductions. With the 2014 electri-
city grid, battery-electric vehicle is the preferred tech-
nology in some counties while the least-preferred
technology in other counties for cars and SUVs
(Figure S4 in the supplementary document). How-
ever, if coal power plants are entirely phased out
(‘alternative electricity grid’), the distributions of
damages for battery-electric vehicles would move
entirely to the left of those for the other tech-
nologies. In other words, battery-electric vehicles
powered by coal-phased-out electricity grid would
deliver substantial health and climate benefits across
the United States. Furthermore, as natural gas com-
pressors, used in the transportation and storage
of natural gas as well as compression of natural
gas to make CNG fuel, consume electricity for
operation, the life cycle damages of CNG vehicles
would also reduce under the ‘alternative electricity
grid.’
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The frequency distributions of life cycle damages
of any specific fuel-vehicle technology are similar for
passenger cars and for SUVs. But this is not the case
for transit buses. First, CNG transit buses are more
likely to increase damages compared to conventional
diesel buses due to fuel efficiency penalty and meth-
ane leakage along the natural gas supply chain (Tong
et al 2015b, 2017). Second, battery-electric buses are
more likely to reduce damages compared to con-
ventional diesel buses thanks to stop-and-go duty
cycles (that are more beneficial to battery-electric
vehicles) and higher tailpipe emissions of criteria air
pollutants for conventional diesel buses (Tong et al
2015b, 2017).

3.2. ‘Best’ fuel-vehicle technology for each county
To facilitate decision-making, we compare and rank
the fuel-vehicle technologies by their life cycle dam-
ages for the same vehicle type in the same county. In
figure 2, we show the preferred fuel-vehicle techno-
logies that lead to the lowest damages in any county.
In particular, we consider three environmental goals:
climate change only, air pollution only, and climate
change and air pollution.We find that battery-electric
buses are the preferred technology across the country
for the climate change goal. However, for other goals
and other vehicle types, preferred fuel-vehicle techno-
logies depend on the environmental goal considered
as well as where vehicles are used.

Looking across environmental goals (i.e. differ-
ent columns in figure 2), for passenger cars, SUVs,
or transit buses, there is no fuel-vehicle technology
that achieves the lowest climate change damages and
the smallest air pollution damages in all counties.
Instead, we identify a trade-off for technology solu-
tions that mitigate climate change damages and those
that reduce air pollution damages. Although altern-
ative fuel and advanced vehicles almost always reduce
climate change damages compared to conventional
gasoline/diesel vehicles, they can increase air pollu-
tion damages in some regions (see supplementary
document, section 4.4, and Supplementary Data File
for quantitative details). It is worth noting, however,
that battery-electric passenger car could lead to co-
benefits (mitigating both climate change and air pol-
lution damages) for the west coast, Rocky Mountain,
and New England. Similarly, gasoline/diesel hybrid-
electric cars and SUVs would provide co-benefits in
the Midwest.

Vehicle electrification has great potential to
reduce climate change damages. Battery-electric
vehicles lead to the lowest climate change damages
for passenger cars and transit buses in the major-
ity of U.S. regions (except the Midwest). Battery-
electric SUVs have lower climate change damages
than gasoline and CNG SUVs in all areas. How-
ever, significant variability and uncertainty exist in
the air pollution damages caused by battery-electric
vehicles across theU.S. For regions where clean power

plants are already in place, such as the west coast
and Rocky Mountain region, battery-electric pas-
senger cars achieve lower air pollution damages than
other fuel-vehicle technologies. It is also worth noting
that battery-electric SUVs and battery-electric transit
buses only lead to the smallest air pollution damages
for densely-populated regions on the west coast. The
differences in the relative air pollution damages of
battery-electric vehicles across vehicle types suggest
the need to consider vehicle type in the policymaking.

The emissions profiles of natural gas vehicles are
different from conventional gasoline/diesel vehicles.
Although natural gas vehicles have lower tailpipe CO2

emissions and NOx emissions than gasoline/diesel
vehicles, they havemore substantial life cyclemethane
emissions (a potent greenhouse gas) andmuch higher
tailpipe CO emissions (a criteria air pollutant). As a
result, when comparing life cycle damages of CNG
vehicles with gasoline/diesel vehicles, the spatial vari-
ability in marginal air pollution damages (primarily
determined by baseline emissions, wind speed and
direction, and population density) plays an import-
ant role. In this study, CNG vehicles always lead to
greater damages than gasoline/diesel hybrid-electric
vehicles for climate change damage or air pollution
damage.

3.3. Sensitivity to time of charging
In contrary to petroleum and natural gas fuels, the
environmental impact of battery-electric vehicles is
much more sensitive to time of vehicle charging. This
is because the cost-minimized dispatch of electric
power grid varies from hour to hour due to changes
in demand, generator availability, renewable energy
generation, and transmission line congestion (Siler-
Evans et al 2012). The preceding discussion so far
highlights the potential of battery-electric vehicles in
reducing climate change and air pollution damages,
assuming the average emissions from all electricity
generation sources in 2014. The concept of ‘aver-
age electricity’ may apply if the adoption of battery-
electric vehicles leads to a sizable electricity load com-
parable to existing electricity loads. For a limited
penetration of battery-electric vehicles, the expected
charging load is more likely to cause a ‘consequential’
change (or perturbation) in the grid operation. To
quantify these ‘consequential’ impacts, we estimate
the ‘consequential’ generation at the margin follow-
ing the regression-based approach proposed in (Siler-
Evans et al 2012). In figure 3, we show that the ‘con-
sequential’ life cycle climate change and air pollution
damages of battery-electric vehicles vary substantially
depending on when vehicle charging happens during
a day. In Dallas, for instance, the life cycle air pollu-
tion damages of battery-electric cars would vary by
three times between charging at 4 am and 11 am.
In any county within a given electricity grid region,
the relationship between the consequential impacts
and hour of charging is similar because we assume
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electrons flow freely within each grid region. How-
ever, we find inconsistent patterns regarding the effect
of charging time across electricity grid regions (figure
3). This finding further highlights the need to follow
a regionalized strategy to incentivize vehicle charging
at certain times tomaximize social benefits. Finally, to
bound the impact of charging time, we estimated the
range of ‘consequential’ life cycle damages of battery-
electric vehicles when charged at the ‘cleanest’ and the
‘dirtiest’ hours in each electricity grid region across
the country in the supplementary document (sections
3.3 and 4.2).

3.4. Sensitivity to monetary valuation
Subjective judgments of decision-makers further
complicate the trade-offs of technology solutions for
different environmental goals. Two examples are the
value of a statistical life (an economic valuation of lost
life due to premature morbidity and mortality) and
the social cost of carbon (the marginal damages of an
additional metric ton of carbon dioxide emissions).
These assumptions are crucial in converting phys-
ical health outcomes to monetary values, but they
are inherently subjective and uncertain. Indeed, the
estimates of the value of a statistical life could range
from ~$1 million to ~$24 million (Viscusi and Aldy
2003, U.S. Environmental Protection Agency 2010).
Furthermore, U.S. federal agencies have the discre-
tion to choose VSLs appropriate for their rulemaking
(Viscusi and Aldy 2003, U.S. Environmental Pro-
tection Agency 2010). The social cost of carbon is
profoundly uncertain because it depends on climate
change impacts happening in the future as well as the
valuation of the impacts (Pizer et al 2014, Interagency
Working Group on Social Cost of Carbon United
States Government 2015).While the social cost of car-
bon would be impacted by the assumed value of a
statistical life, we assume, in the following paramet-
ric analysis, that they are independent of each other.

In figure 4, we show fraction of the U.S. pop-
ulation with the preferred fuel-vehicle technolo-
gies (i.e. achieving the lowest climate change and
air pollution damages) in their home counties. For
instance, for passenger cars (the first column), with
the baseline assumptions of the value of statistical
life and social cost of carbon (the dashed vertical
line), 30% of U.S. population would find battery-
electric vehicles to have the lowest life cycle damages
in their home county whereas the other 70% of res-
idents would prefer gasoline hybrid-electric vehicles
for the same goal. This result relies on the same
underlying results as those shown in figures 1 and
2 but is presented in a compressed way to allow
for a visual comparison of results over any changed
assumption.

For passenger cars and SUVs, battery-electric
vehicles and gasoline-hybrid vehicles are preferred
technologies, and their relative shares as the preferred

technology for U.S. populations are largely stable
across the assumed range of either social cost of
carbon or value of a statistical life. However, for
transit buses, the preferred technology choices change
dramatically depending on the social cost of carbon
and the value of a statistical life used.

As we assume the climate change damages are
proportional to the social cost of carbon and the
air pollution damages proportional to the value
of a statistical life, different assumptions for these
two variables represent varying weights between cli-
mate change damages and air pollution damages in
decision-making. In the extreme case, a $0/metric
ton social cost of carbon indicates that only air pol-
lution damages are considered, and a $0 value of
a statistical life suggests that only climate change
damages matter. Since different fuel-vehicle techno-
logies are preferred for transit buses under differ-
ent goals (figure 2), divergent subjective judgments
of decision-makers only amplify this trade-off in
decision-making.

3.5. Sensitivity to air pollution damage model
There is a considerable difference in the estimated
life cycle air pollution damages using the EASIUR
model or the AP2 model (Heo et al 2016a, Gilmore
et al 2019). In particular, the two models differ by
multiple times in their respective valuations of NOx

and SOx across the United States due to different
baseline emissions inventories and population data,
and distinct approaches in calculating the resulting
airborne concentrations of PM2.5 and ozone in the
response of criteria air pollutant emissions (Heo et al
2016a, Gilmore et al 2019). For the scope of this
paper, the implications of inconsistent estimates from
these two models include different damage estim-
ates for the same fuel-vehicle technologies, and, as a
result, different rankings of fuel-vehicle technologies
in some counties.

3.6. Sensitivity to emissions inventory
As summarized in the supplementary document (table
S1), all existing studies used the GREET model for
emissions inventories. In the supplementary document
(section 4.4), we estimated the life cycle air pollution
and climate change damages using the emissions data
from the GREET model. The GREET model repor-
ted higher criteria air pollutant emissions from oil
refining than the National Emissions Inventory, so
using the GREETmodel’s emissions data would favor
alternative fuels and advanced vehicle technologies.

The literature reported different cradle-to-grave
air pollution damages for battery manufacturing (by
a factor of three) (Michalek et al 2011, Tessum et al
2014). Using the higher battery manufacturing dam-
age estimate leads to 13%–104% increases in the
life cycle air pollution damages for battery-electric
vehicles across vehicle types and counties compared
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Figure 3. ‘Consequential’ life cycle climate change and air pollution damages of battery-electric passenger cars in a typical
spring/fall day in 2014 in four representative U.S. cities, New York City, Los Angeles, Chicago, and Dallas. Here we model and
estimate the marginal damage of consequential electricity generation to meet the additional load from vehicle charging on top of
the existing load. We use U.S. EPA’s emissions data, electricity marginal factors estimates (Azevedo et al 2020), and the EASIUR
model.

to those using the lower battery manufacturing dam-
age estimate (section 4.3 in the supplementary docu-
ment). Assuming more serious battery manufactur-
ing damages, the trade-offs between climate change
damages and air pollution damages become more
evident, but battery-electric cars and buses used in
regions with clean electricity still provide overall
environmental benefits.

4. Conclusions and discussion

This paper presents a systematic, spatially-explicit
assessment of environmental externalities caused by
alternative fuels and advanced vehicle technologies
in the United States. Using a coupled modeling
framework linking state-of-the-art life cycle assess-
ment, reduced-form air quality models, and integ-
rated assessment models, we estimate the monetized
damages in climate change and air pollution caused
by the life cycle air emissions from passenger-moving
vehicles (passenger cars, SUVs and transit buses). We
find substantial spatial variability in the monetized
damages for all fuel-vehicle technologies studied.

None of the fuel-vehicle technologies leads to the
lowest climate change damages and the smallest air
pollution damages across all U.S. counties. Trade-
offs between air pollution mitigation and decar-
bonization for the fuel-switching strategy (replace-
ment of incumbent petroleum fuels with alternative
fuels or advanced vehicle technologies) are persist-
ent across several spatial scales (counties, states,
and electricity grid regions). These findings suggest
that policy actions towards sustainable transporta-
tion should account for the spatial heterogeneity in

climate change and air pollution impacts as well as
reflect stakeholders’ value judgment in terms of the
relative importance between clean air and decarbon-
ization goals. As a result, depending on the decision-
making goal (clean air or stabilizing climate), the pre-
ferred technology choices are sensitive to economic
assumptions such as the social cost of carbon and the
value of a statistical life. We note that such trade-offs
could be high hurdles for the adoption of and support
for sustainable transportation technologies. Further
research should study how these trade-offs impact
consumer behaviors and real-world decision making.

Vehicle electrification has substantial potential to
reduce climate change damages and air pollution
damages. With the 2014 electricity grid, vehicle elec-
trification can already mitigate climate change dam-
ages compared to conventional petroleum vehicles on
the west coast and New England. However, battery-
electric vehicles can lead to up to three point six
times increases in air pollution damages for passen-
ger cars and SUVs and up to six point three times
increases for transit buses compared to conventional
gasoline/diesel vehicles in U.S. regions with high
shares of coal-fired power plants (such as Midwest
and Southeast). Even in U.S. regions with a relat-
ively clean electricity grid (such as the west coast and
New England), battery-electric vehicles can only par-
tially reduce air pollution damages. These findings
highlight the importance of continually cleaning and
decarbonizing electricity grid, such as with increased
penetrations of renewable energy technologies and
nuclear power (Wei et al 2013). A clean electricity grid
with near-zero emissions not only benefits the electri-
city sector and traditional electricity consumers such
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Figure 4. Fraction of U.S. population with the preferred fuel-vehicle technologies (i.e. achieving the lowest climate change and air
pollution damages) in their home counties as a function of the social cost of carbon and value of a statistical life. The top panel
assumed 2014 electricity grid, and the bottom panel assumed an alternative electricity grid in which coal-fired and oil-fired power
plants are replaced by natural gas combined cycle (NGCC) power plants at the same locations. Color shades represent the relative
difference between the lowest and the second-lowest damages (see definition in figure 2). We use U.S. EPA’s emissions data, the
EASIUR model and assume the average electricity in each electricity grid region. Dashed vertical lines represent baseline
assumptions.

as buildings but also becomes increasingly crucial for
a sustainable transportation future (Wei et al 2013,
McCollum et al 2014).

This work highlights the importance of consider-
ing the interactions between electricity grid operation
and electric vehicle adoption and usage. However,
given the limitation in time and scope, wewere unable
to model explicitly how vehicle electrification would

impact the operation of the grid in the near term or
how vehicle electrification would lead to new gen-
eration assets and transmission lines over an exten-
ded time. As the adoption of battery-electric vehicles
grows, the charging load from vehicle electrification
would start to emerge beyond the ‘marginal’ elec-
tricity load in certain regions and specific hours. As
a result, the optimal dispatch of the electricity grid
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would change, and the newgeneration capacitywould
have to be built. Thus, if well planned, vehicle elec-
trification could present new opportunities to decar-
bonize the electricity grid and the transportation sec-
tors at the same time. Further research could shed
light on how to plan and safeguard a sustainable
transition of the electricity grid and vehicle fleets.
Furthermore, future research should explore techno-
logy deployment, policy support, and infrastructure
lock-in in the interconnected electricity and trans-
portation systems.

Our work shows the effectiveness and import-
ance of vehicle fuel efficiency and tailpipe emis-
sions standards (Shindell et al 2011). Hybrid-electric
vehicles provide tangible benefits in terms of reduced
climate change damages and air pollution damages
no matter where they are driven. They are also
the preferred technologies for regions with relat-
ively dirty electricity grid. More importantly, the
increasing performance of energy-efficient vehicles
would set the bar with which advanced and emer-
ging vehicle technologies compete. Reducing vehicle
tailpipe emissions has long been a strategy to solve
the air quality issues in the U.S. (US EPA 2001,
U.S. Environmental Protection Agency (EPA) and
U.S. Department of Transportation (DOT) National
Highway Traffic Safety Administration (NHTSA)
2012). Except for battery-electric vehicles, which
eliminate tailpipe emissions, tailpipe emissions still
account for a majority share in life cycle emissions
inventory and the resulting life cycle monetized dam-
ages. Strengthening vehicle tailpipe emissions can be
an effective means to reduce vehicles’ environmental
externalities as vehicles last for more than a decade on
average.

Systems analysis that considers multiple differ-
ent impacts across the life cycle of fuel-vehicle tech-
nologies would not be possible without the recent
progress in the quantification of health and climate
change damages. However, any air quality and impact
model would still face the daunting challenge to
balance accuracy, representation (e.g. temporal and
spatial resolution and scope, atmospheric physics,
and chemistry), and computational efficiency. Full-
scale chemical transport models (such as CMAQ)
strive to simulate the best atmospheric chemistry
and quantify the most detailed spatial and tem-
poral representations at the expense of high compu-
tational resources. As a result, the use of such mod-
els in our study would limit sensitivity analysis and
fail to identify the most sensitive factors or vari-
ables. Reduced-form air quality and impact mod-
els, such as those we have used in this paper, signi-
ficantly reduce the running time, but at the cost of
coarser spatial representation and approximation of
the atmospheric chemistry. In particular, the county-
level spatial resolution of the EASIUR and AP2 mod-
els would underestimate the health impacts of tailpipe
emissions to drivers, pedestrians, and residents who

are near road infrastructure. The lack of finer-scale
representation would bias results in favor of gas-
oline/diesel vehicles versus battery-electric vehicles
whose emissions occur at remote locations of power
plants.

Finally, we note that a comprehensive analysis
to determine fuel-vehicle technologies for passenger-
carrying vehicles should include other fuel techno-
logies (e.g. biofuels, hydrogen, and fuel cell electric
vehicles) and consider different perspectives such as
economics, consumer behavior, vehicle use patterns,
and infrastructure planning (Wolinetz et al 2018,
Tong et al 2019). Nevertheless, this work shows that
the life cycle climate change and air pollution dam-
ages of fuel-vehicle technologies can and should be
considered. Quantifying and internalizing externalit-
ies caused by greenhouse gas and air pollutant emis-
sions from the life cycle of vehicles is essential to
achieve sustainable transportation.
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