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ABSTRACT 
Energy storage systems (ESSs), such as lithium-ion batteries, are 

being used today in renewable grid systems to provide the 

capacity, power, and quick response required for operation in 

grid applications, including peak shaving, frequency regulation, 

back-up power, and voltage support. Each application imposes a 

different duty cycle on the ESS. This represents the 

charge/discharge profile associated with energy generation and 

demand. Different duty cycle characteristics can have different 

effects on performance, life, and duration of ESSs. Within 

lithium-ion batteries, various chemistries exist that own different 

features in terms of specific energy, power and cycle life, that 

ultimately determine their usability and performance.  

Therefore, characterization of duty cycles is key to determine 

how to properly design lithium-ion battery system for grid 

applications. Given the usage-dependent degradation 

trajectories, this research task is a critical step to study the unique 

aging behaviors of grid batteries. Significant energy and cost 

savings can be achieved by the optimal application of lithium-

ion batteries for grid energy storage, enabling greater utilization 

of renewable grid systems. In this paper, we identify a systematic 

approach, based on the adoption of both unsupervised learning 

and frequency domain techniques, to characterizing grid-specific 

duty cycles for the grid-specific peak shaving application. 

 

1. INTRODUCTION 
In 2019, global renewable generation capacity reached 2,179 

gigawatts [1]. While hydropower remains the largest contributor 

to renewable generation, the fastest-growing resources are 

photovoltaic and wind power, accounting for 90% of all net 

renewable capacity additions in 2019. These resources comprise 

a substantial amount of the grid generation power. In California, 

for example, variable renewable generation (i.e. wind and solar 

power) constituted 29% of the total generation in 2019 [2]. The 

introduction of these intermittent generation sources poses 

challenges to conventional methods for planning the daily 

operation of the electric grid. Additionally, the diurnal 

availability of solar generation can aggravate ramping problems 

when load increases as solar production decreases. This is 

problematic in grids with high solar penetration; in the California 

independent system operator (ISO), this has been termed the 

“duck curve” [3]. Energy storage systems (ESSs) are considered 

as a way to address the aforementioned drawbacks. Among many 

other technologies for ESSs, electrochemical energy storage 

devices are the main ones implemented and used today for grid 

services, of which nearly 80% is provided by lithium-ion 

batteries since 2003 [4, 5]. 

 

1.1 Motivation 

Lithium-ion batteries are prevalent in renewable grid systems as 

ESSs since they can provide fast response time, modularity, 

flexible installation, and short construction cycles [6]. ESSs in 

renewable grid systems participate in grid applications, such as 

peak shaving, frequency regulation, voltage support, and back-

up power, supporting grid operations at various locations on the 

grid [7]. However, battery degradation resulting from 

participation in grid applications is considered a major factor for 

profitable operation [8]. The degradation trajectories of lithium-

ion battery systems depend both on the particular lithium-ion 

chemistry of the battery, and the usage within these grid 

applications. Current battery technology accounts for various 

lithium-ion chemistries, each with different characteristics that 

may be appropriate for different use within the grid needs. For 

example, a chemistry with high specific energy but low cycle life 

may be appropriate for back-up power, as this application only 

uses the battery during grid outages for extended multi-hour 

durations [9]. Therefore, properly assessing the most appropriate 

chemistry for a targeted application can maximize the 

performance, usability, and duration of entire grid systems.  

The usage within each grid application is characterized 

by duty cycles. A duty cycle is a charge and discharge profile 

(given in terms of power or current) representing the demands 

associated with a specific grid application. Likewise, each grid 

application has different duty cycling characteristics, which can 

lead to different capacity fade trends in battery systems. 

Understanding degradation mechanisms triggered by 

characteristic grid-specific duty cycles is key to develop 

predictive tools that can be integrated into cost/benefit analyses 

to maximize revenue and minimize lost capacity. It is well 

known that differences in duty cycles could significantly impact 

the durability of ESSs [10]. As the duty cycles and operating 

conditions can be vastly different for stationary grid-scale 

https://office365stanford-my.sharepoint.com/Users/sonori/Dropbox/3.%20Grid%20Storage/Kevin/DSCC/Renewable#_ENREF_1
https://office365stanford-my.sharepoint.com/Users/sonori/Dropbox/3.%20Grid%20Storage/Kevin/DSCC/2018#_ENREF_2
https://office365stanford-my.sharepoint.com/Users/sonori/Dropbox/3.%20Grid%20Storage/Kevin/DSCC/What#_ENREF_3
https://office365stanford-my.sharepoint.com/Users/sonori/Dropbox/3.%20Grid%20Storage/Kevin/DSCC/U.S.#_ENREF_4
https://office365stanford-my.sharepoint.com/Users/sonori/Dropbox/3.%20Grid%20Storage/Kevin/DSCC/Lazard's#_ENREF_5
https://office365stanford-my.sharepoint.com/Users/sonori/Dropbox/3.%20Grid%20Storage/Kevin/DSCC/The#_ENREF_7


 2 Copyright © 2020 by ASME 

storage as opposed to automotive energy storage devices, 

predictive ESS models properly calibrated over grid-specific 

duty cycles are missing in today’s literature. It is imperative to 

understand and predict the performance and durability of large 

grid-level battery ESSs which calls for the study and analysis of 

actual duty cycles for each application.  

In current practice, a plethora of work has been 

conducted on the analysis and characterization of duty cycles for 

automotive batteries. In [11], real driving cycles for hybrid 

electric vehicles were analyzed by distribution histogram. In 

[12], a way of creating effective synthetic duty cycles was 

published based on pulse-multisine design technique where a 

Discrete Fourier Transform (DFT) approach was adopted  to 

show that the pulse power current duty cycle was insufficient to 

characterize the amplitude and frequency bandwidth of a real  

driving cycle. In [13], real battery duty cycles were categorized 

by driving speed and style, and an approach based on the power 

spectral density (PSD) was applied to each category by 

differentiating discharge and charge events. In addition, various 

characterization methods have been proposed for different 

research purposes, using several analytical techniques [14-16]. 

In [14], electric bus driving cycles were analyzed using the cross-

PSD, involving the DFT of both duty cycles. In [15], high-

performance multisine, random pulse, and inverse cumulative 

distribution analysis were used to characterize duty cycles of 

large-format automotive lithium-ion pouch cells. In [16], a signal 

design method was proposed to identify battery model 

parameters using frequency range analysis of actual driving 

cycles.  

Current studies in renewable grid applications show the 

lack of a systematic approach to define characteristic grid-

specific duty cycles. For example, Sandia National Laboratory 

has previously created a methodology for testing the 

performance of energy storage, using duty cycles under various 

grid applications, including peak shaving, frequency regulation, 

PV smoothing, and solar firming [17]. However, these duty 

cycles are generated directly from existing data, with minimal 

characterization of the duty cycles under this existing data. For 

PV smoothing, ESS duty cycles were generated from existing PV 

generation profiles, without identification of characteristic duty 

cycles [18]. For frequency regulation, PSD was used as 

exploratory analysis of the dispatch signal, but ultimately was 

not used in duty cycle construction; “aggressive” and “average” 

days from the dispatch were used instead [19]. 

In other studies, performance and life of stationary 

battery systems were investigated, including performance under 

frequency regulation given different dispatch methodologies 

[20], and energy arbitrage [8]. These studies adopted simplistic 

empirical models for battery degradation and predicted 

performance, and simulated battery degradation directly from 

the dispatch profiles, without characterizing the dispatch.  

 In this paper, we first determine characteristic duty 

cycles using k-means clustering for the grid application of peak 

shaving. We then use the PSD to extract and analyze the 

frequency content of the clustered duty cycles. The two points 

above are instrumental for analyzing how grid-batteries are 

operated under this application, and can be used to study the 

unique performance and aging behaviors of batteries in this 

modus operandi. 

There are four sections in this paper: peak shaving, 

methodology, data description, and duty cycle analysis. In the 

peak shaving section, we study and discuss the motivation for 

and operation of peak shaving, and how battery ESSs are used to 

support such a grid application. In the methodology section, we 

describe in detail fast Fourier transform (FFT), PSD, and k-

means clustering, and their relevance to duty cycle analysis. In 

the data description section, we present the data used for the 

characterization and synthesis of duty cycles. In the duty cycle 

analysis section, we present a method for duty cycle 

characterization and apply this process to different peak shaving 

dispatches, and compare them to electric vehicle duty cycles. 

Concluding remarks are found in the conclusion section. 
 

2. PEAK SHAVING 
The electric utility supplies electricity from the grid to meet the 

demand of an end user’s load, e.g., a house, office, or factory. 

The facility is then billed monthly by the utility, as measured by 

the utility meter. The bill charges are defined in a tariff rate 

determined by the utility, and include several elements such as 

time-of-use charges and demand charges, based on the amount 

of electric energy and maximum (peak) power consumed from 

the grid by the load. 

Peak shaving is used to lower the monthly peak power 

consumed by the facility from the grid (“shaving” the peak). 

Different strategies for peak shaving exist, including reducing 

peak consumption of facility loads, managing charging of 

electric vehicles, and dispatching battery ESSs [21]. For 

batteries, peak shaving is accomplished by discharging when the 

load is large and charging from the grid when electricity is cheap 

[22]. Based on peak shaving, the potential market for residential 

battery ESSs is approximately 5 million end users in the United 

States [23]. Real-time operation of a battery for peak-shaving can 

involve simple control loops to discharge or charge the battery 

based on current power flow from the grid and SOC of the 

battery [24], or include an optimization algorithm to compute 

optimum battery dispatch given additional constraints, such as 

the power flow through grid infrastructure [25]. 

 

 
 
FIGURE 1: PEAK SHAVING POWER FLOW DIAGRAM. Arrows 

indicate direction of power flow. The battery charges and discharges to 

offset the load, reducing the power flow as seen by the utility meter, and 

reducing the utility bill.  
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3. METHODOLOGY 
This section describes the methods and techniques used in this 

paper to analyze grid application duty cycles. 

 

3.1 Fast Fourier Transform 

The FFT method is an algorithm that computes the DFT of a 

time-series sequence [26]. The DFT takes as input a sequence of 

values 𝑥[𝑛], 𝑛 = 0, 1, 2, … , 𝑁 − 1  of length N, in time. This 

sequence is then decomposed into a sequence of sinusoidal 

components 𝑋[𝑞], 𝑞 = 0, … , 𝑁 − 1 , of length N, for different 

frequencies 𝑛𝑞/𝑁. 

𝑋[𝑞] = ∑ 𝑥[𝑛]𝑒−
𝑖2𝜋𝑛𝑞

𝑁

𝑁−1

𝑛=0

,    𝑞 = 0, … , 𝑁 − 1 (1) 

As described in Section 4, the dispatch profiles of the 

battery are recorded as time-series sequences, so the FFT forms 

the basis for the duty cycle analysis. 

 

3.2 Power spectral density 

The PSD is the measure of a signal's power content as a function 

of its frequency. Our duty cycle analysis uses Welch’s method 

for computing PSD [27]. It is based on the periodogram of the 

signal, which in turn is based off of the DFT of the signal. 

Welch’s method is summarized as follows: a sequence of values 

𝑥[𝑛] = 0, 1, 2, … , 𝑁 − 1 ,  of length N collected at interval 

periods 𝑇, is partitioned into 𝐾 segments of length 𝑀 where 

𝑀 < 𝑁 − 1  [28].These segments overlap by an amount 𝑆 , 

usually in the range 0.4𝑀 ≤ 𝑆 ≤ 𝑀.1  

For each segment 𝑟 = 1 … 𝑅, represented as the subset 

𝑥[𝑚] of the signal where 𝑚 = (𝑟 − 1)𝑆, … , 𝑀 + (𝑟 − 1)𝑆 − 1, 

a windowed DFT 𝑋𝑟(𝑓)  is computed at frequency 𝑓  with 

window function2 𝑤. 

𝑋𝑟(𝑓) =  ∑ 𝑥[𝑚]𝑤[𝑚]𝑒−𝑖2𝜋𝑓𝑚

𝑚

 (4) 

 Then, each segment DFT is used to form the segment’s 

modified periodogram value, 𝑃𝑟(𝑓) as follows: 

𝑃𝑟(𝑓) =
1

∑ 𝑤2[𝑚]𝑀
𝑚=0

|𝑋𝑟(𝑓)|2 (5) 

 

 Finally, the periodogram values are averaged to obtain 

Welch’s estimate of the PSD. 

𝑆𝑥(𝑓) =
1

𝑅
∑ 𝑃𝑟(𝑓)

𝑅

𝑟=1

(6) 

We use the pwelch function in MATLAB for Welch’s method 

for PSD, which uses a Hamming window as the default window 

function. In addition to the signal sequence, pwelch accepts as 

parameters frequency 𝑓, segment length 𝑀, and overlap 𝑁. For 

our analysis, we choose the frequency to be that of the time-

 

 

 
1 This rule of thumb for selecting overlap 𝑆 is as presented in [30]. 
2 The window function is used to take into account the fact that the segment 

may not be an exact multiple of a given frequency. The windowing function is 

greatest in the center of the segment and decreases towards zero at the ends, so 

series sequence interval (𝑓 = 1/𝑇) and overlap 𝑁 = 𝑀/2, both 

of which are within the ranges suggested by [28]. Fixing these 

parameters leaves us with 𝑀  as the sole degree of freedom, 

allowing us to determine the amount of smoothing and averaging 

in Welch’s method; as 𝑀 decreases for fixed 𝑁 and 𝑓, more 

periodograms are calculated across shorter segments. 

Throughout this paper, these parameters are set at 𝑓 = 1/3600 

Hz, 𝑀 = 48, and 𝑁 = 𝑀/2 = 24, chosen to balance the tradeoff 

between smoothing and noise reduction.3 

 By averaging these modified (windowed) periodograms, 

Welch’s method for PSD allows us to study the spectral 

characteristics of a dataset, removing much of the signal noise 

retained in the FFT. Figure (2) shows the periodogram of the FFT 

for the peak shaving dispatch profile, separated by charge and 

discharge. The PSD for the same dispatch profile is also shown 

in Figure (13), displaying the same characteristics as the FFT 

periodogram but with a smoother profile. 

 

 
FIGURE 2: PERIODOGRAM FROM FFT FOR PEAK SHAVING 

YEARLY DISPATCH, “LARGEOFFICENEW” PROFILE. The FFT 

and its respective periodogram are computed for the charge and 

discharge dispatch profile separately.  

 

As the degradation and health of the battery are dependent on 

different mechanisms for charging and discharging, separating 

these two events in the PSD analysis could give useful insights 

on the battery usage.  

 

3.3 Mean centering 

The battery dispatch for charging and discharging are strictly 

negative and strictly positive, respectively. Separating the charge 

and discharge and directly taking the FFT would yield a bias in 

the FFT periodogram, appearing as low-frequency components 

not present in the original dispatch. In order to remove this effect, 

mean centering is applied to ensure that the resulting separated 

charge and discharge profiles have zero mean, while preserving 

all frequency components in these profiles. 

that any discontinuities between the beginning and end of the signal are 
minimized. 

3 The choice of 𝑀 and 𝑁 correspond to segments of two days and one 

day, respectively. 
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 Mean centering is applied to the entire dispatch profile 

using the following procedure. This procedure is described for 

obtaining mean-centered discharge (or charge) profiles, below: 

1. Construct a new profile consisting of only non-negative 

(non-positive) dispatch. 

2. Find each individual discharge (charge) instance within 

this new profile, where a discharge (charge) instance is 

defined as the battery starting at 0 dispatch, positively 

(negatively) dispatching, then returning to 0 dispatch. 

3. Construct a new mean-centered discharge (charge) 

profile by concatenating each discharge (charge) 

instance with a copy of reversed sign. 

 

3.4 k-means clustering 

Clustering is an unsupervised learning method to organize and 

partition data into “clusters”. Data within each cluster share 

some features [29]. This class of methods has been widely 

studied for characterizing time-series data [30].  

 In k-means clustering, 𝑘  clusters are constructed from 

𝑛  observations of data, where each observation is assigned a 

cluster by the closest Euclidean distance to the cluster centroid, 

or the mean value of all observations in the cluster. That is, given 

𝑘 desired clusters, and dataset of observations 𝑥1 … 𝑥𝑛, k-means 

clustering determines 𝑘  cluster centroids as a solution  𝜙∗ =
[𝑐1 … 𝑐𝑘]𝑇 that minimizes the cost function 𝐽, below [31]: 

 
𝜙∗ = min 𝐽 , (7)

𝐽 = ∑ min
𝑗=1…𝑘

‖𝑥𝑖 − 𝑐𝑗‖
2

𝑛

𝑖=1

(8)
 

 

We use the kmeans function in MATLAB to apply k-

means clustering to the dispatch profiles. As the initialization of 

the cluster centroids is important for clustering convergence, the 

k-means++ algorithm is used for this initialization [31]. Within 

the context of electric power systems, k-means clustering has 

been applied to solar and wind generation profiles [32, 33], 

electricity load demand profiles [34, 35], and driving cycles for 

electric vehicles [36]. This paper represents the first application 

of k-means clustering to grid storage battery dispatch profiles. 

The application of k-means clustering to the dataset is as follows. 

We first choose each observation to represent one day, reshaping 

the time-series data into an array where each row is the dispatch 

for one day, and each column is the dispatch for one hour within 

the day. Next, as some days contain zero dispatch (i.e. no 

charging or discharging of the battery), the corresponding rows 

of the array are removed. Days with missing or corrupted values 

(e.g. NaN) are also removed. The number of clusters, k, is then 

chosen, and k-means clustering is applied to the remaining 

nonzero dispatch array.  

The output of k-means clustering on the dispatch data is 𝑘 

“cluster centroids”, representing the average daily dispatch 

within each cluster, and cluster assignments for each nonzero 

dispatch day. 

 

4. DATA DESCRIPTION 
The time-series dispatch profiles for the grid application are 

summarized in Table (1). 

 
TABLE 1: GRID APPLICATION DISPATCH DATA SOURCES. 

Application 

System 
Rated 

Power, 

kW 

System 
Rated 

Energy, 

kWh 

Load Name 
Tariff 

Rate 

Peak 

Shaving 
200 400 

LargeOfficeNew 
PG&E 

E19 

SuperMarketNew 
PG&E 

A10 

 

Peak shaving data were obtained from a publicly-available 

optimization and simulation tools for energy storage: QuESt, 

developed by Sandia National Laboratories [37]. QuESt allows 

users to select facility load profiles, energy storage parameters 

such as rated power and energy, as well as a tariff rate structure. 

QuESt then uses this input data to simulate the energy storage 

dispatch per month over one year, optimizing the dispatch for bill 

reduction by peak shaving. This dispatch data is obtained as an 

hourly dispatch (frequency 1/3600 Hz).  

Figure (3) shows the QuESt-simulated dispatch of the 

200kW, 400kWh battery using the “LargeOfficeNew” load over 

the year. The histogram at the left in Figure (4) shows a bias 

towards high power charging of the battery. The histogram at the 

right in Figure (4) also shows that when the battery is at rest (i.e. 

neither charging nor discharging), the majority of rest instances 

are less than 48 hours in length, with most rest instances between 

10 and 20 hours long. These rest instances are periods of time 

when the battery is not actively used for peak shaving, and 

indicate opportunities to employ the batteries for other grid 

applications during these periods. 

 
FIGURE 3: YEARLY DISPATCH OF A 200kW, 400kW GRID 

STORAGE BATTERY FOR PEAK SHAVING, 

“LARGEOFFICENEW” PROFILE. The QuESt tool was used to 

produce this dispatch, which QuESt simulated on an hourly basis. 

Discharging is positive, while charging is negative.  

 

Figure (5) shows the QuESt-simulated dispatch of the 200kW, 

400kWh battery using the “SuperMarketNew” load over the 

year. Figure (6) is the histogram of nonzero dispatch over the 

year for the “SuperMarketNew” load, showing that there is both 

a different distribution of charging and discharging, as well as 

QuESt:#_ENREF_37
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more frequent dispatch with shorter rest periods, than the 

“LargeOfficeNew” load.  
 

 

 
FIGURE 4: LEFT: HISTOGRAM OF NON-ZERO PEAK SHAVING 

DISPATCH, “LARGEOFFICENEW”. Datapoints corresponding to 

zero dispatch were excluded from this histogram. Histogram shows a 

bias towards higher charging (negative) power. RIGHT: HISTOGRAM 

OF REST PERIODS DURING DISPATCH, “LARGEOFFICENEW”. 

The period of rest is determined as the length of time between when a 

charge or discharge ends, and the next charge or discharge begins. 

 

 
FIGURE 5: YEARLY DISPATCH OF A 200kW, 400kW GRID 

STORAGE BATTERY FOR PEAK SHAVING, 

“SUPERMARKETNEW” PROFILE. The QuESt tool was used to 

produce this dispatch on hourly basis. Discharging is positive and 

charging is negative. 

 

 
FIGURE 6: LEFT: HISTOGRAM OF NONZERO PEAK SHAVING 

DISPATCH, “SUPERMARKETNEW”. Datapoints corresponding to 

dispatch of 0 were excluded from this histogram. RIGHT: 

HISTOGRAM OF REST PERIODS DURING DISPATCH, 

“SUPERMARKETNEW”. The period of rest is determined as the 

length of time between when a charge or discharge ends, and the next 

charge or discharge begins. 

 

5. DUTY CYCLE ANALYSIS 
For a given grid storage application dispatch profile, we conduct 

the following steps. First, we use k-means clustering to obtain 

distinct duty cycle clusters. The number of clusters is chosen to 

determine duty cycles that represent the range of charging and 

discharging behavior within the dispatch profile under 

consideration. Then, within each cluster, we compute the PSD of 

the charge and discharge separately. This process is summarized 

in Figure (7). 

 

 
FIGURE 7: FLOW DIAGRAM FOR DUTY CYCLE ANALYSIS. The 

outputs of this analysis are shown in orange: PSD for charging and 

discharging within each dispatch cluster. 

 

5.2 LargeOfficeNew load peak shaving dispatch 

This section applies the analysis described in Figure (7) to the 

peak shaving dispatch profile simulated by QuESt for the 

“LargeOfficeNew” facility load. 

 

5.2.1 Selection of number of clusters 

Previous studies of residential facility load have revealed the 

differences in load between seasons [35]. As peak shaving 

dispatch is dependent on facility load, we conduct a seasonal 

analysis of the peak shaving dispatch to choose the number of 

clusters, k. We divide this dispatch into four seasonal events as 

follows: 

(i) Spring: March, April, May 

(ii) Summer: June, July, August 

(iii) Fall: September, October, November 

(iv) Winter: December, January, February 

Figure (8) shows the histogram of peak shaving dispatch on the 

“LargeOfficeNew” load for each season. We find that a majority 

of dispatch occurs in the summer, with limited activity in the 

winter and roughly equivalent dispatch distribution in the spring 

and fall. We also evaluate the differences in charging across 

seasons. This is shown in Figure (9); there are only 19 charging 

instances during the winter season, while all other seasons have 

at least 80.   

Based on the seasonal analysis, there appears to be an 

active dispatch segment of the year (summer), followed by a 

section of the year of moderate dispatch activity (spring and fall), 

and a section of mild dispatch (winter). We choose a value for k 

= 2 for k-means clustering, to cluster the dispatch between the 

active dispatch and the moderate/mild dispatch, and then 

characterize the duty cycle within each cluster.  

 

5.1.2 Clustering analysis 

Using the methodology for k-means described in Section 3.4 

with k = 2, we obtain two clusters, Cluster 1 and Cluster 2. Figure 
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(10) is the assignment of clusters for each nonzero dispatch day 

throughout the year. Day assignments for Cluster 1 fall mainly 

in the summer, and day assignments for Cluster 2 fall mainly in 

the remainder of the year. 

 

 
FIGURE 8: HISTOGRAM OF NONZERO PEAK SHAVING 

DISPATCH BY SEASON, “LARGEOFFICENEW”.  

 

 
FIGURE 9: CHARGING INSTANCES BY SEASON, 

“LARGEOFFICENEW”.  

 

 
FIGURE 10: CLUSTER ASSIGNMENTS FOR EACH DAY OF 

YEARLY DISPATCH. “LARGEOFFICENEW”. Days without charge 

or discharge (zero-dispatch days) are not assigned a cluster. 

The two clusters have respective centroids, here interpreted as a 

representative daily dispatch of the battery within each cluster. 

Figure (11) shows the two cluster centroids, with Centroid 1 as 

the centroid for cluster 1, and Centroid 2 the centroid for cluster 

2. It is from this figure that the underlying operating protocol for 

peak shaving dispatch in QuESt can be seen: the dispatch charges 

the battery immediately before the discharge required for peak 

shaving. As Centroid 1 requires a longer discharge at higher 

power than Centroid 2, the charging beforehand is at much 

higher power to fill the battery, in anticipation for a higher energy 

discharge. 

 

 
FIGURE 11: CLUSTER CENTROIDS OF YEARLY DISPATCH, 

“LARGEOFFICENEW”. Cluster centroids as determined by k-means 

clustering on the yearly dispatch, cluster length 1 day = 24 hours. 

 

We now compute the PSD for charge and discharge separately of 

the two clusters, with mean centering applied as described in 

Section 3.3. Figure (12) shows the PSD computed for charging 

and discharging for each cluster. The PSD as computed for 

Cluster 1 charging exhibits a strong peak at 4.123e-05 Hz, while 

the PSD as computed for Cluster 2 charging shows a much 

smaller peak at 2.279e-05 Hz. For discharging, the PSD as 

computed for Cluster 1 and Cluster 2 exhibit peaks of similar 

size, at 2.279e-05 Hz and 2.496e-05 Hz, respectively.  

 

 
FIGURE 12: POWER SPECTRAL DENSITY OF PEAK SHAVING 

DISPATCH, “LARGEOFFICENEW”, BY CLUSTER. PSD was 

conducted on clusters within the yearly dispatch, as assigned in Figure 

(10). 

 

5.1.3 Comparison to PSD computed over entire dispatch 
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We also compute the PSD over the entire year without k-means 

clustering. This is presented in Figure (13). The PSD computed 

for charging contains a strong peak at 4.015e-5 Hz, and in the 

PSD computed for discharging, a peak at 2.387e-5 Hz. These are 

closer in value to those of Cluster 1, than those of Cluster 2. The 

PSD computed over the entire year is dominated by the charging 

profile in Cluster 1. However, Cluster 1 only represents 27% of 

the total nonzero dispatch days. Characterizing the peak-shaving 

dispatch duty cycle based on the yearly PSD would obscure the 

characteristic duty cycling of Cluster 2. 

 

 
FIGURE 13: POWER SPECTRAL DENSITY OF PEAK SHAVING 

YEARLY DISPATCH, “LARGEOFFICENEW”. The charging PSD 

exhibits a strong peak at 4.015e-5 Hz, while the discharging PSD 

exhibits a peak at 2.387e-5 Hz. 

 

5.2 SuperMarketNew load peak shaving dispatch 

This section applies the analysis described in Figure (7) to the 

peak shaving dispatch profile simulated by QuESt for the 

“SuperMarketNew” facility load, and compares the results of 

this analysis to that of the “LargeOfficeNew” facility load. 

 

5.2.1 Selection of number of clusters 

For the “SuperMarketNew” load, Figure (14) is the histogram 

for peak shaving dispatch profile on that load within each season, 

and Figure (15) is the instances of charging occurrences by 

season, displaying more consistent dispatch across seasons than 

for the “LargeOfficeNew” dispatch profile.  

 

 
FIGURE 14: HISTOGRAM OF NONZERO PEAK SHAVING 

DISPATCH BY SEASON, “SUPERMARKETNEW”. 

 

 
FIGURE 15: CHARGING INSTANCES BY SEASON, 

“SUPERMARKETNEW”.  

 

Unlike with the “LargeOfficeNew” dispatch profile, we cannot 

rely on seasonal differences in dispatch to inform the selection 

of number of clusters for the “SuperMarketNew” dispatch 

profile. We instead choose the number of clusters so that 

applying k-means clustering to the dispatch profile yields 

clusters of comparable sizes to avoid over-generalizing the 

dispatch and clustering the majority of daily dispatch into a given 

cluster. For this dispatch profile, using k = 2 yields one cluster 

with 344 days and one cluster with only 15 days. Using k = 3 

yields three clusters of sizes 145, 113, and 101 days. We adopt 

this choice. 

 

5.2.2. Clustering analysis 

Using the methodology for k-means described in Section 4.3 

with k = 3, we obtain three clusters, Cluster 1, Cluster 2, and 

Cluster 3. Figure (16) is the assignment of clusters for each 

nonzero dispatch day throughout the year. As expected from our 
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seasonal analysis on this dispatch profile, clusters do not appear 

to correspond to any seasonal dispatch. 

 

 
FIGURE 16: CLUSTER ASSIGNMENTS FOR EACH DAY OF 

YEARLY DISPATCH, “SUPERMARKETNEW”. Days without charge 

and discharge (zero-dispatch days) are not assigned a cluster. 

 

The three clusters have respective centroids, here interpreted as 

a representative daily dispatch of the battery within each cluster. 

Figure (17) shows the three cluster centroids, with Centroid 1 as 

the centroid for cluster 1, Centroid 2 as the centroid for cluster 2, 

and Centroid 3 the centroid for cluster 3. There are three distinct 

dispatch profiles: Centroid 1 represents days with a high charge 

power and low discharge power; Centroid 2 represents days with 

a low charge and discharge power; and Centroid 3 represents 

days with a high charge and discharge power. 

 

 
FIGURE 17: CLUSTER CENTROIDS OF YEARLY DISPATCH, 

“SUPERMARKETNEW”. Cluster centroids as determined by k-means 

clustering on the yearly dispatch, cluster length 1 day = 24 hours. 

 

The PSD for charge and discharge of the three clusters is 

computed, with mean centering applied as in Section 3.3. Figure 

(18) shows the PSD computed for charging and discharging for 

each cluster. Cluster 1 shows a strong peak in the PSD computed 

for charging, at 2.713e-5 Hz. Cluster 2 shows no discernable 

peaks in the PSD computed for charging and discharging. Cluster 

3 shows peaks in the PSD computed for both charging and 

discharging, at 2.713e-5 Hz and 1.378e-4 Hz, respectively. 

 

 
FIGURE 18: POWER SPECTRAL DENSITY OF PEAK SHAVING 

DISPATCH, “LARGEOFFICENEW”, BY CLUSTER. PSD was 

conducted on clusters within the yearly dispatch, as assigned in Figure 

(16). 

 

5.2.3. Comparison to PSD computed over entire dispatch 

As in Section 5.1.3, we also compute the PSD over the entire 

year, without k-means clustering, for the “SuperMarketNew” 

dispatch profile. This is shown in Figure (19). The PSD 

computed for charging shows a peak at 2.604e-5 Hz, and no 

discernable peak for discharging. In this case, many of the duty 

cycling features present in the “SuperMarketNew” clusters are 

missing, including the large peak in the PSD computed for 

Cluster 3 discharging.  

 

 
FIGURE 19: POWER SPECTRAL DENSITY OF PEAK SHAVING 

YEARLY DISPATCH, “SUPERMARKETNEW”. The charging PSD 

exhibits a strong peak at 2.604e-5 Hz, while there is no discernable peak 

in discharge. 

 

5.3. Comparison to electric vehicle duty cycles 

Table (2) compares the frequency corresponding to the peak 

value of the PSD for peak shaving to those obtained by Z. Liu et 

al. in [13],  which evaluated simulated 48V “mild-hybrid” 
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vehicle battery dispatch using PSD. These values are also 

compared to the same values obtained for the dispatch simulated 

of a Tesla Model S “fully-electric” vehicle battery, on the US06 

and WLTP driving cycles. The “LargeOfficeNew” and 

“SuperMarketNew” yearly dispatches are chosen as 

representatives for peak shaving. 

With the exception of the mild-hybrid vehicle 

discharge, the peak frequency of the PSD for peak shaving is at 

least two orders of magnitude smaller than that of the PSD for 

the batteries in automotive applications. Batteries for grid 

applications are excited across a different frequency range, and 

therefore exhibit different impedances, than in automotive 

applications. This difference has implications on the design of 

battery management systems (BMS) for grid batteries in 

comparison to electric automotive batteries, as BMS must be 

calibrated to account for the operating impedance range of the 

battery.  

This difference also has implications on the operation 

of second-life batteries (i.e. post automotive-usage) for grid 

applications. As the second-life battery is excited across a 

different frequency range, its degradation within grid application 

operation will be different than in its “first-life” in electric 

vehicle operation. Therefore, any models to estimate degradation 

and capacity fade for the electric vehicle operation will no longer 

be accurate for the grid application operation, and new models 

must be constructed and calibrated for the new operation mode 

under grid application. 

 
TABLE 2: PSD PEAK FREQUENCIES BY APPLICATION. 

Application 
Discharge PSD 

Peak Frequency, Hz 

Charge PSD 

Peak Frequency, Hz 

Peak Shaving, 

“LargeOfficeNew” 
2.39e-5 4.02e-5 

Peak Shaving, 

“SuperMarketNew” 
2.60e-5 1.38e-4 

Mild-Hybrid 

Vehicle [13] 
4e-4 – 1.17e-2 3.52e-2 – 4.69e-2 

Fully-Electric 

Vehicle, US06 
7.81e-3 4.69e-2 

Fully-Electric 

Vehicle, WLTP 
1.56e-2 1.95e-2 

 

 

6.  CONCLUSIONS 
A process for characterizing the duty cycle of grid applications 

for energy storage was presented, using k-means clustering and 

PSD to analyze the duty cycle of charge and discharge for 

stationary battery under peak shaving application. The duty cycle 

of peak shaving was compared to the duty cycle of a mild-hybrid 

vehicle battery and a fully-electric vehicle battery, showing 

distinct differences in frequency range between the duty cycles.  

The combination of k-means clustering and PSD 

analysis captures features within each cluster, that would 

otherwise be lost in a PSD analysis conducted over the entire 

dispatch profile. This process also characterizes the variation in 

duty cycle within a peak shaving dispatch profile. This allows 

for direct comparison between peak shaving dispatch profiles, as 

well to other applications, such as batteries in mild-hybrid and 

fully-electric vehicle applications. 
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