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Aging-Aware Optimal Energy Management Control
for a Parallel Hybrid Vehicle Based on

Electrochemical-Degradation Dynamics
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Abstract—Hybrid electric vehicles offer the best alternative to5
gasoline-only powered vehicles as they combine a conventional6
propulsion system with an electric propulsion system. A supervi-7
sory controller is needed to optimally manage the energy on-board.8
Published works on this topic have mainly focused on strategies9
aimed at minimizing the fuel consumption. In this article, we10
address the problem of designing a supervisory controller that11
achieves minimum fuel consumption while optimally preserving12
battery life. Electrochemical degradation dynamics are used in the13
multi-objective problem formulation to accurately capture, and14
control battery performance, and aging during the control design15
phase. The electrochemical degradation model accounts for the16
electrolyte dynamics to capture high C-rate operation of the battery17
which are properl in charge sustaining hybrid powertrains. We18
resort to the optimal control formalism, and nonlinear optimization19
techniques along with the full discretization approach (in the state,20
and in the control) to cast the energy management problem into a21
large scale non-linear programming problem, that is able to deal22
with multi-scale dynamics, namely from the stiff electrolyte battery23
dynamics to map-based slow dynamics of the actuators. Numerical24
simulations conducted over four different standard driving cycles25
(with, and without road grades) show that our aging-aware energy26
management approach is able to significantly reduce the deteri-27
oration of the battery, while retaining very good fuel reduction28
performance.29
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I. INTRODUCTION31

THE increasing concerns about the reduction of green-32

house gases have moved the joint interest of governments,33

industries and academia towards the development of a clean34

and sustainable mobility. Hybrid electric vehicles (HEVs) are35

blending the transition towards the full-electric mobility, since36

they run on both electric and petrol power, in a proportion that37

is dependent on the level of hybridization of the powertrain38

architecture: from start&stop micro hybrid to plug-in hybrids39

where the internal combustion engine serves solely as a range40

extender that supports the main electric motor. All the hybrid41
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electric vehicles have at least two power-sources that contribute 42

in delivering the required power to the wheels. 43

There is a vast literature on control strategies aimed at the op- 44

timization of the fuel economy in HEVs, spanning from heuristic 45

strategies as the thermostatic control logic of [1] and [2], Model 46

Predictive Control methods [3] and [4] to the widely adopted 47

Equivalent Consumption Minimization Strategy (ECMS), found 48

e.g. in [5], [6] and [7], based on the necessary optimality condi- 49

tions stated by the Pontryagin Minimum Principle (PMP) 50

Convex optimization methods have been used thanks to the 51

availability of off-the-shelf free efficient solvers that allow to 52

find the global optimal solution in a fairly short computational 53

time. The energy management problem is cast as a convex 54

optimization problem in [8], for an HEV with engine start 55

and gearshift costs based on a combination of deterministic 56

dynamic programming (DP) and convex optimization methods. 57

It is shown that the method yields globally optimal results while 58

returning the solution in much less time than the conventional 59

DP method. In [9], the original non-convex HEV problem is 60

relaxed to become a convex optimization problem and solved 61

as such. Stochastic optimization methods have been also pro- 62

posed to account for random characteristics of the vehicle speed 63

and drivers behaviors. In [10], an on-board learning algorithm 64

for Markov Chain models was proposed to generate transition 65

probability matrices of power demand. Recently, Reinforcement 66

Learning (RL) methods have gained some traction as they cast 67

the optimal HEV problem into a model-free optimal control. 68

In [11] heuristic planning energy management controller, based 69

on a Dyna agent is proposed for real-time fuel saving in PHEVs. 70

In [12], the same group of researchers proposed an adaptive 71

hierarchical energy management strategy for PHEVs through 72

deep learning and genetic algorithm (GA). A recently published 73

survey on RL-based methods for hybrid vehicles optimization 74

can be found in [13]. 75

The reduction of fuel consumption, and consequently of the 76

cost associated to the vehicle usage, is the main objective of the 77

most common energy management techniques; nevertheless, it 78

is well known that a frequent and severe usage of the battery 79

leads to a fast deterioration of its performances, that results 80

in the replacement of the battery system after few years with 81

increase warranty costs. In [14], ECMS strategy is adapted to 82

the case where battery aging cost is added to the fuel cost. 83

In [15], an experimentally validated battery aging model is 84

exploited to setup a multi objective minimization problem for 85
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the case of Honda Insight. In [16], a battery health-conscious86

power management is proposed that minimizes the resistance87

growth film and fuel consumption. The importance of a mindful88

management of charging operations in extending battery life is89

highlighted in [17], while battery internal-temperature control90

is used in [18] to preserve battery life.91

In all of the aforementioned articles, the battery system has92

been modeled with equivalent circuit models. The simplest93

equivalent circuit comprises a resistance in series with a voltage94

generator, and the state-of-charge is the only state; the model is95

able to capture the static relation between battery current and96

terminal voltage, but as thoroughly discussed in [19], the model97

is affected by a large error compared to the models that take volt-98

age dynamics into account.1 This error is amplified in conditions99

far from the equilibrium, e.g. for high charge/discharge current100

values, long-lasting current bursts and at high or low State of101

Charge (SOC). In [16] an electrochemistry-based battery model102

for closed-loop verification is used to find the set of admissible103

controls, yet the optimal control problem is formulated using104

the simpler equivalent circuit model. As stated in [20], [21],105

the knowledge of the internal states of the battery given by the106

first-principle electrochemical battery models is of paramount107

importance for an accurate description of the aging dynamics.108

In this paper, we design an energy management battery health-109

aware strategy for a parallel HEV based on a reduced order110

electrochemical model. The accurate knowledge of the internal111

states of the battery allows to adopt less compelling constraints112

on the controls and on the battery states; moreover, by reducing113

the modeling errors with an accurate description of the voltage114

dynamics, we can better rely on the resulting control strategy.115

The paper is organized as follows: in Section II we describe116

the powertrain model of the parallel HEV considered in this117

study, by also briefly recalling the main equations of the elec-118

trochemical model and of the capacity degradation model. In119

Section III we state the energy management problem. We show120

in Section IV, by means of numerical simulation, the results of121

the optimization method, and finally, in Section V concluding122

remarks are provided.123

II. DEVELOPMENT OF THE POWERTRAIN MODEL124

This research aims at investigating the energy management125

strategies for a mild parallel hybrid electric passenger car. The126

powertrain architecture is illustrated in Fig. 1 and comprises127

of a 8-speed automatic transmission that can be disconnected128

from the rest of the powertrain by means of a clutch system;129

the internal combustion engine is assisted by an electric motor130

that is fed by a low-voltage 48V battery and is connected to the131

crankshaft through a reduction ratio.132

The electric motor —or Internal Starter Generator (ISG)133

unit— is always connected to the crankshaft; this simplifies134

the powertrain but prevents the vehicle from traveling in pure135

electric mode. The electric motor unit is connected to the136

engine shaft through the reduction ratio γmot > 1, therefore137

1The RC-model, that adds a parallel Resistance-Capacitor branch in series to
the voltage generator and the resistance, exhibits much better results in [19].

Fig. 1. Architecture of the pre-transmission parallel-hybrid powertrain
configuration (P1) under investigation.

TABLE I
HYBRID VEHICLE PARAMETERS

ωmot(t) = ωeng(t) γmot. The engine torque Teng(·) and the 138

motor torque Tmot(·) sum up at the wheels giving the total 139

torque Tw(·) that is expressed by 140

Tw(t) = (Teng(t)−Jengω̇eng(t)+Tmot(t)γmot)η
sign[ax(t)]
trn γtot

+ Tbrk(t), (1)

where γtot = γtrn(t) γaxle is the total transmission ratio, ax(·) 141

is the vehicle longitudinal acceleration and Tbrk(·) is the torque 142

exerted by the mechanical brakes on the wheels. The system 143

parameters are listed in Table I. The termJeng ω̇eng(t) represents 144

the extra-torque needed to accelerate the engine. The trans- 145

mission ratio γtrn(t) ∈ {γtrn,1, . . . , γtrn,8} switches among the 146

eight ratios according to the simple speed-based strategy 147
� if ωeng(t) > ωeng,up, up-shift 148
� if ωeng(t) < ωeng,down, down-shift 149

A. Driving Cycle and Longitudinal Dynamics 150

We formulate the optimization problem by constraining the 151

speed of the vehicle to follow the velocity profile imposed by 152

the driving cycle. We solve the optimization over four driving 153

cycles, with different speed and altitude profiles: the NEDC, the 154
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Fig. 2. Vail2NREL mountain driving cycle.

Fig. 3. Engine fuel consumption rate in kg/h (blue solid lines) and torque
limits (red dashed lines).

new standard WLTP and the US06 [22] driving cycles are used155

in emission type-approval tests for passenger cars (the former156

ones in Europe, the latter mostly in the United States); the last157

driving cycle, called Vail2NREL in Fig. 2, is a demanding high158

elevation driving cycle. The torque required at the wheels at time159

t is computed from the longitudinal dynamics equation160

Tw(t) =
(
cf vx(t)

2 +mv ax(t)
)
rw

+ (g mv ( sin[σ(t)] + crr0cos[σ(t)] )) rw, (2)

where σroad(·) is the road slope and vx(·) is the longitudinal161

vehicle speed, both taken from the four driving profiles. If we162

impose the vehicle speed and the road slope according to the163

selected driving profile, then the torque at wheel Tw(·) is known164

from (2).165

B. Engine166

The instantaneous fuel consumption map in Fig. 3 is derived167

from the engine efficiency and depends on the torque and168

speed at the motor shaft. The 2D map is well approximated169

by Willan’s lines approach [23], that states that there exists an170

affine relationship between the fuel consumption rate ṁf —171

which is proportional to the power generated by the combustion172

through the specific calorific value — and the mechanical power173

output by the engine Peng(t) = ωeng(t)Teng(t). Therefore the174

instantaneous fuel consumption rate at time t becomes175

ṁf(ωeng(t), Teng(t)) = α(ωeng(t))Peng + β(ωeng(t)), (3)

TABLE II
WILLAN’S COEFFICIENTS

Fig. 4. Motor/generator efficiency contours and torque limits.

with α(ωeng(·)) =
∑3

i=0 αi ω
i−1
eng(·) and β(ωeng(·)) = 176∑3

i=0 βi ω
i−1
eng(·). The Willan’s parameters used in this work 177

have been identified for an engine of a SUV class vehicle and 178

are reported in Table II. 179

C. Motor 180

The ISG unit of the 48 V hybrid vehicle operates in two 181

working modes: as a motor the ISG converts the electrical energy 182

from the battery to mechanical energy at the shaft, while as 183

a generator recovers the kinetic energy during a regenerative 184

braking by transforming it to electrical energy that is stored 185

in the battery. The overall power generated (generator mode) or 186

absorbed (motor mode) by the ISG unit is computed considering 187

the non-unitary efficiency ηmot(t) that depends on the ISG shaft 188

speed ωmot(·) and torque Tmot(·) as 189

Pmot(·) =
{
ωmot(t)Tmot(t)ηmot(t) Tmot(t) < 0, gen.
ωmot(t)Tmot(t)

ηmot(t)
Tmot(t) ≥ 0, mot.

(4)

where ηmot(·) depends on the motor characteristics and is usu- 190

ally represented by iso-efficiency lines as in Fig. 4. 191

If we approximate the ISG efficiency map with a polynomial 192

surface, we should use high order polynomials that are able 193

to capture the steep slopes close to the efficiency holes at low 194

speed and large torque (and at small torque and high speed); 195

this increases the complexity of the formulation and leads to 196

badly scaled derivatives that could undermine the robustness of 197

the optimization algorithm. To overcome this issue, we propose 198

to directly compute the ISG power for every pair (ωmot, Tmot) 199

present in the efficiency map; the resulting surface in Fig. 5 200

is much smoother than the efficiency surface and could be 201
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Fig. 5. Actual motor power computed for each element of the efficiency map
from (4).

approximated with good accuracy by the third order polynomial202

Pmot(ωmot(t), Tmot(t)) =

3∑
j=0

3∑
i=0

pi,j ωmot(t)
j Tmot(t)

i.

(5)

D. Battery System203

The Energy Storage System (ESS) comprises of 180 gr/NMC204

lithium-ion SONY 18650 cylindrical cells arranged in np = 16205

parallel modules with ns = 13 cells in series.2 Each cell has206

a nominal voltage of 3.6V and nominal capacity equal to207

2.0Ah, resulting in a 48V battery pack that stores approximately208

1.5 kWh of electrical energy in nominal conditions. The maxi-209

mum discharge/charge power is equal to 17.11 kW and 11.5 kW210

respectively, corresponding to a maximum cell current equal211

to 30 A and 20 A respectively. From the battery cell terminal212

voltage V (·) and the current applied to the cell I(·), the overall213

battery power at time t is given as:214

Pbatt(t) = ns np V (t)I(t). (6)

Here, we assume that all the cells are balanced and that the215

battery cooling system is able to keep the cells at a constant216

temperature uniformly throughout the battery. This is generally217

not true for standard batteries, in particular for high current218

values that lead to local temperature gradients; nevertheless, this219

simplifying assumption is useful to better understand the effect220

of different temperatures on battery performances and aging,221

and the analysis can be used to properly size the battery cooling222

system.223

E. Cell Charge/Discharge Dynamics224

The Doyle-Fuller-Newman (DFN) electrochemical model de-225

scribes the diffusion of the lithium ions throughout the cell226

electrodes and electrolyte [25]. The cell dynamics are described227

by four coupled nonlinear partial differential equations (PDEs)228

that represent the transport of charge and mass in the solid and229

liquid phase. Because of the computational complexity required230

2Specifications of the cell used are found in [24].

by the solution of the PDEs, reduced models where capacity and 231

power characteristics of the electrode are lumped into a single 232

particle (Single Particle Model - SPM), are proposed to reduce 233

the dimensionality of the model and make it suitable for control 234

and estimation applications. In this work we use an enhanced 235

version of the SPM (i.e. ESPM) that takes the electrolyte dy- 236

namics into account to improve the prediction accuracy during 237

high charge/discharge currents ([21], [26]) which are typical of 238

charge-sustaining HEVs. 239

The model input is the current I(t) applied to the cell (gal- 240

vanostatic mode) and the output is the terminal voltage V (t) 241

measured between the positive and negative current collectors 242

and resulting from the sum of the potential and overpotential 243

terms according to 244

V (t) = (Up(t)− Un(t)) + (ηp(t)− ηn(t))

+ (φp
e (L, t)− φn

e (0, t))−RΩI(t). (7a)

The values and the meaning of the parameters appearing in this 245

section are reported in Table VI in the Appendix. 246

The equilibrium potentials U i(t) depend on the lithium ion 247

concentration at the solid-electrolyte interface cis,e(t); defining 248

the stoichiometry ratio as θi(t) = cis,e(t)/c
i
s,max ∈ [0; 1], we can 249

write the functional form of the equilibrium potential at the 250

cathode side as 251

Up(θp(t)) = − 10.72[θp(t)]4 + 23.88[θp(t)]3

− 16.77[θp(t)]2 + 2.595 θp(t) + 4.563

and at the anode side.3 as 252

Un(θn(t)) = 0.1493 + 0.8493 exp(−61.79 θn(t))

+ 0.3824 exp(−665.8 θn(t))

− exp(39.42 θn(t)− 41.92)

− 0.03131tan−1(25.59 θn(t)− 4.099)

− 0.009434tan−1(32.49 θn(t)− 15.74).

The kinetic overpotential terms ηi(t) are related to the current 253

density ji(t) = ∓ I(t)
AiLi by the Butler-Volmer equation [25], 254

whose solution is 255

ηi(t) =
RgT

αF
sinh−1

[
ji(t)

aisi
i
0(t)

]
. i = p, n (7b)

The exchange current density ii0(t) is related to the concen- 256

tration at the electrode surface and in the electrolyte, cis,e(t) and 257

cie(t) respectively, through 258

ii0(t) = ki
√

cie(t)(c
i
s,max − cis,e(t))c

i
s,e(t). i = p, n (7c)

The electrolyte overpotential Δφe(t) = φp
e (L, t)− φn

e (0, t) 259

is computed by integrating the equation of the conservation of 260

charge in the liquid phase under the assumption of constant 261

current density throughout the electrodes and leads to 262

Δφe(t) = κd(log[c
p
e (t)]− log[cne (t)])− I(t)Re (7d)

3Both cathode and anode overpotential equations are taken from [27]
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where κd =
2RgT (1−t+0 )

F (1 + β). The electrolyte resistance is263

Re =
1

κεe
(L

p

Ap + Ln

An ), with the electrolyte conductivity κ that264

depends on temperature according to the equations detailed265

in [28], where the authors present a thorough experimental266

analysis of the electrochemical properties of a LiPF6-based267

electrolyte.268

Equations (7a) to (7d) describe the static relations between269

the terminal voltage, the applied current and the internal lithium270

concentration. The dynamic evolution of the battery voltage is271

due to the diffusion of the lithium concentration throughout the272

solid and liquid phase with current, described by the coupled273

PDEs of the FDN model. Many order reduction techniques are274

used in the literature to reduce the complexity of such equations,275

from finite difference methods [29] — usually characterized by276

a large number of states — to Galerkin orthogonal decomposi-277

tion [30] and frequency-based order reduction [21], [31]. The278

latter are particularly appealing for control applications because279

of the low number of states necessary to obtain a good accuracy280

for standard HEV current cycles.281

A state-space realization of the solid diffusion transfer func-282

tion that explicitly relates the SOC to the surface concentration283

at the electrodes and allows to take temperature variations into284

account has been developed in parallel to this research and is285

used in this work. The overall state-space model equations are286

ẋ(t) = Ax(t) +BI(t), with x ∈ R7

y(t) = Cx(t), with y(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃ps,e(t)

c̃ns,e(t)

˜SOC(t)

c̃pe (t)

c̃ne (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R5

(8)

where x = [x1, . . . , x7]
T is the vector of state variables of the 287

battery model and the output vector y(t) comprises of the 288

lithium concentration at the solid-electrolyte interphase of the 289

positive and negative electrodes — i.e. at the surface of the 290

electrode particle — (cis,e, i = p, n), the cell state-of-charge and 291

the lithium ion concentration in the electrolyte phase at the anode 292

and cathode side (cie, i = p, n). The tilde indicates a perturbation 293

from the equilibrium conditions. The state space matrices are 294

reported in (9), shown at the bottom of this page. Notice that 295

the matrix C selects five out of the seven states to build the 296

output vector y(t); the states x2 and x4, which are derived from 297

a realization of a Pade’s approximation-based transfer function 298

do not appear in the output vector, but they serve to better 299

capture the dynamics of the electrode surface concentrations 300

over a wide range of frequencies of battery operation. The solid 301

phase diffusion coefficients Di
s, the kinetic constants ki and the 302

activity coefficient β become larger as temperature increases 303

according to the Arrhenius-like equation 304

Γ(T ) = Γref exp

[
−Eact,Γ

Rg

(
1
T

− 1
Tref,Γ

)]
. (10)

The reverse trend of RΩ with temperature is described by the 305

same equation (10) with a sign change inside the exponential. 306

F. Battery Aging 307

Degradation of battery performance throughout time can be 308

traced back to many different aging mechanisms depending on 309

electrode composition and operating conditions; comprehensive 310

reviews can be found in [32]. It is common practice though to 311

lump all the aging phenomena into a side irreversible reaction 312

between the solvent and the anode material that forms a film 313

at the solid electrolyte interface (SEI) [33], [34]. The SEI 314

layer growth consumes cyclable Li-ions reducing the overall 315

battery capacity and isolates the anode particles increasing its 316

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 189Dp
s

[Rp
s ]2

− 3465[Dp
s ]

2

[Rp
s ]4

0 0
189Dp

s (θ
p
100%−θp

0%)cps,max

[Rp
s ]2

0 0

1 0 0 0 −(θp100% − θp0%)c
p
s,max 0 0

0 0 − 189Dn
n

[Rn
s ]

2 − 3465[Dn
s ]

2

[Rn
s ]

4 − 189Dn
s (θ

n
100%−θn

0%)cns,max

[Rn
s ]

2 0 0

0 0 1 0 (θn100% − θn0%)c
n
s,max 0 0

0 0 0 0 0 0 0

0 0 0 0 0 − 9.8710Deff
e

L2 0

0 0 0 0 0 0 − 9.5842Deff
e

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =
[

7
εpFApLp − [Rp

s ]
2

15Dp
s εpFApLp

7
εnFAnLn − [Rn

s ]
2

15Dn
s ε

nFAnLn − 1
QN

3.1463(t+0 −1)
εeLFAp − 2.9351(t+0 −1)

εeLFAn

]�

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)
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impedance. In this paper we borrow the reduced-order degrada-317

tion model from [35], which is based on a thorough experimen-318

tal campaign performed at different charge/discharge current319

profiles and SOC values: since the diffusion of the solvent320

reactants through the SEI layer is much slower than the lithium321

de-insertion dynamics, then the Butler-Volmer equation for the322

solvent reduction kinetics can be simplified as323

js(t) = − kSEI(T )

2An(1 + λθ(t))
√
t
, (11)

where θ(t) = exp[ F
RT (η

n(t) + Un(t)− Usei)]. Notice that at324

higher SOC the half-cell open circuit voltage Un(t) is small,325

therefore the side reaction kinetics is faster; following a similar326

reasoning, a cathodic current at the anode side (during charging)327

leads to negative surface overpotential ηn(t), thus accelerating328

the SEI formation. The fitting parameter λ weighs the effect329

of the anode potential on the SEI growth, while the kinetic330

coefficient for the side reaction kSEI(T ) follows the Arrhenius331

dependency reported in (10). The capacity loss associated to the332

SEI formation is obtained by integrating the side-reaction rate333

over time, namely334

QSEI =

∫ t

0
js(t)Andt . (12)

The authors of [35] claim that the increased capacity loss335

observed after charging and discharging cycles is due to the336

structural damages that constantly isolate the active material.337

This phenomenon is well described by the variation of the active338

material volume fraction that, under the uniform utilization339

assumption becomes340

dεAM(t)

dt
= −κε(T )|jn(t)|, (13)

where again κε(T ) depends on temperature according to (10).341

The SOC-dependent capacity loss rate induced by the volume342

fraction reduction is expressed as343

dQAM

dt
=

dεAM(t)

dt
SOC(t)V n cns,max. (14)

The total capacity loss at time t > 0 is modeled by assuming the344

superposition of the two capacity loss mechanisms, i.e.345

Qloss = QSEI +QAM

= −
∫ t

0

kSEI(T )

2(1 + λθ(t))
√
t
dt

−
∫ t

0
κAM(T )SOC(t) |I(t)|dt, (15)

where the constant terms in (14) have been condensed in346

the fitting parameter κAM(T ). The last term of (15) is the347

SOC-weighted current throughput scaled by the severity factor348

κAM(T ). This term indicates that the aging is accelerated if349

the battery undergoes high charge/discharge cycles at high SOC350

values.351

III. BATTERY LIFE-AWARE ENERGY MANAGEMENT 352

In this section, we formulate the multi-objective optimal 353

control problem for the battery life-aware energy management 354

strategy and we detail the adopted solution method. Finally, we 355

present the results of the numerical simulations and assess the 356

effect of temperatures on the vehicle performance and on battery 357

degradation. 358

A. Problem Formulation 359

As discussed in Section II-A, engine and motor speeds are 360

constrained to match the velocity profile of the vehicle; this 361

means that we can only regulate engine and motor torque (Teng 362

and Tmot), together with the mechanical braking torque Tbrk 363

and the cell current I to devise our control strategy; we define 364

the control vector as 365

u(t) = [Teng(t), Tmot(t), Tbrk(t), I(t)]
�.

for each t that belongs to the finite-time horizon [0, tf ], where 366

tf is the length of the selected driving cycle. 367

In order to take both energy savings and battery aging into 368

account, the cost function shall include a term dependent on the 369

capacity degradation of the battery in addition to the engine fuel 370

consumption rate. We expect the fuel consumed (measured in 371

liters) over the driving cycle to be much higher than the capacity 372

loss (measured as a fraction of the initial nominal capacity). 373

For this reason, instead of directly using these two quantities 374

in the formulation of the objective function, we accounts for 375

the monetary cost of fuel and battery degradation: we consider 376

an average price of the gasoline in the European Union equal 377

to Γfuel = 1.60€/liter, while we assume that the cost of the 378

entire 1.5 kWh battery pack is approximately equal to 900 €.4 379

We assume a battery pack to be replaced when it reaches 80% of 380

its initial capacity; indeed, after this threshold the degradation 381

is faster and the impedance rise limits the battery power per- 382

formance. This means that the total cost of the battery must 383

be applied over a capacity loss Qloss = 20%, resulting in a 384

unitary cost for each percentage point of capacity loss equal 385

to Γage = 45€/%loss. 386

The objective function is formulated as the weighted sum 387

of the cost of fuel consumption over the time horizon [0, tf ] 388

(running cost) and the cost of capacity loss at the end of the 389

driving cycle tf (terminal cost) 390

J = α

∫ tf

0
Γfuel ṁf(x(t),u(t)) dt

+ (1 − α) ΓageQloss (x(tf),u(tf)), (16)

where the Pareto coefficient 0 ≤ α ≤ 1 weights the two terms. 391

The capacity lossQloss(·) is as in (15) and the instantaneous fuel 392

consumption rate ṁf(·) has been defined in (3). The states x ∈ 393

R7 follow the battery dynamics detailed in (8). The electrode 394

4This is the approximate cost of the battery replacement for a Toyota Prius
C taken from [36] and adapted to the battery cost per kWh to 2019 pricing as
reported in [37]. This value is used just to scale the battery degradation term
in the cost function (16) so to have the same order of magnitude of the fuel
consumption term.
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surface concentrations have to remain within their maximum395

and minimum values, i.e. cis,min ≤ cis ≤ cis,max, i = p, n. The396

cell voltage (7a) should remain within the safety range indicated397

on the cell datasheet, namely 2.4V ≤ V (t) ≤ 4.2V , for each398

t ∈ [0, tf ]. The knowledge of the internal surface concentrations399

and the constraints on the battery terminal voltage allow to400

expand the limits on the battery SOC without the risk of incurring401

in local over-charges or over-discharges, thus guaranteeing the402

safety conditions; the SOC is therefore constrained to vary403

within SOCmin = 15% and SOCmax = 95%. The initial bat-404

tery SOC is set to SOC(0) = 50% and the charge sustaining405

condition, typical of the non-plugin HEV, is enforced by con-406

straining the final battery SOC to remain within a small window407

around its initial value, namely SOC(0)− tol ≤ SOC(tf ) ≤408

SOC(0) + tol, where we set tol = 2%.409

Finally, the engine and motor torques have to guarantee the410

torque split condition in (1), while the battery power in (6) must411

equate the electric motor power requirement in (4).412

B. Solution Method413

The direct approach, based on a proper discretization of the414

infinite dimensional optimal control problem, is recommended415

in [38] for the solution of large scale problems. The resulting416

finite dimensional problem can be solved by nonlinear program-417

ming techniques. In this work we adopt the direct approach for418

the discretization of the problem described in Section III-A,419

then we solve the resulting finite dimensional problem with420

the interior-point algorithm implemented in the state-of-the-art421

solver Ipopt [39].422

We define the equidistant grid GN = {t0 < t1 < . . . < tN =423

tf}, with constant time step ts =
tN−t0
N and grid points tj =424

t0 + j ts, j = 1, . . . , N . We set ts = 0.5 s for each driving cycle,425

therefore the length of the discretization grid is determined by426

the initial and the final time instants.427

We approximate the controls on the grid GN with piecewise428

constant functions. We then discretize the differential equation429

(8) using the Tustin method, that yields430

x(tj+1) =

[(
IInx

− ts
2
A

)−1 (
IInx

+
ts
2
A

)]
x(tj)

+

[(
IInx

− ts
2
A

)−1

B ts

]
u
(
tj+ 1

2

)
, j=0, . . . , N−1

(17)
where u(tj+ 1

2
) =

utj
+utj+1

2 , IInx
is the nx × nx identity ma-431

trix and the continuous state-space matrices A and B are as in432

(8). Similarly, we discretize the objective function (16) and the433

constraints on the grid GN .434

Ipopt is a gradient based optimizer that requires the gradient435

of the objective function and the Jacobian of the constraints436

(and optionally the Hessian of the Lagrange function); we pro-437

vide the required derivatives with the algorithmic differentiator438

ADiGator [40]. We solved the optimal control problem running439

ADiGator and Ipopt on Matlab 2017b on a 2.5 GHz Intel i5440

processor with 2 cores and with 16 GB of memory.441

Fig. 6. Optimal power split of the hybrid transmission for the Vail2NREL
cycle.

In the following section we show the results of the simulations 442

that have been run several times with different values of the 443

Pareto coefficient α and at different temperatures. 444

IV. SIMULATION RESULTS 445

In this section we first show the solution of the energy 446

management problem without considering the battery aging, 447

i.e. we set α = 1 in the cost function (16). Then, we solve the 448

energy management problem to changing values of the Pareto 449

coefficient; in this way we show how different weights on the 450

two objectives — energy management and battery preserving 451

— affect the control strategy. Finally, we repeat the optimiza- 452

tion for changing values of the battery temperature. Despite a 453

global optimum cannot be guaranteed due to non-convexity and 454

non-linearity of the problem, the adoption of the Monotonic 455

Basin Hopping approach in this paper [41] to search for the best 456

local optimum allows to explore the space of the solutions more 457

thoroughly by starting from different initial guesses. 458

A. Solution to the Energy Management Problem 459

The optimization has been solved for the four driving cycles 460

presented in Section II-A, but we report in the following figures 461

only the results of the Vail2NREL cycle. 462

In the first simulation scenario, we set the battery temperature 463

to 30◦ C and we select the Pareto coefficient α = 1 to find the 464

solution that optimizes solely the fuel consumption. In Fig. 6 465

we present the optimal power split resulting from the solution 466

of the optimization problem. We see that the electric machine 467

assists the engine with an approximately constant power; this is 468

possible because most of the braking energy is recovered by the 469

generator and the mechanical brakes intervene only when the 470

braking maneuver is too severe. It is also interesting to notice 471

that the optimal control uses the energy recovered in the last 472

part of the driving cycle to restore the battery SOC to its initial 473

value, as imposed by the constraints defined in Section III-A 474

and shown in Fig. 7 on a cell level. The a-priori knowledge of 475
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Fig. 7. Cell current, SOC and voltage profiles throughout the Vail2NREL
cycle.

Fig. 8. Electric machine utilization throughout the Vail2NREL cycle.

the road slope in the Vail2NREL driving cycle allows for an476

intelligent management of the battery, recovering energy during477

the downhills that is used to assist the engine during the uphills.478

We see from Fig. 7 that neither the battery current, onr the voltage479

or SOC bounds are limiting the electric performance, since they480

lay within their admissible range throughout the driving cycle.481

This means that the capability of the electric system to recover482

or release power is restricted by the torque limits of the electric483

machine, as illustrated in Fig. 8.484

Nevertheless, it is clear form Fig. 8 that the optimal control485

manages to make the ISG work in the proximity of its highest486

efficiency regions. This is particularly true when the electric ma-487

chine is working in motor mode, while when the electric machine488

is regenerating, even the less efficient regions are exploited: this489

leads to conclude that, from the electric machine perspective,490

it is fundamental to recover as much energy as possible, not491

necessarily in an efficient way.492

The fuel savings for the four driving cycles are reported in493

Table III. The best fuel savings performances are obtained in the494

WLTC cycle, since the frequent acceleration and deceleration495

maneuvers — and the resulting charge/discharge profiles —496

allow to use the battery in the most effective way; the US06497

driving cycle exhibits the lowest fuel savings performance,498

because of the almost constant high speed for most of the cycle499

time that prevents the battery from re-charging.500

TABLE III
FUEL SAVINGS WITH OPTIMAL ENERGY MANAGEMENT CONTROL OF THE

HYBRID ELECTRIC VEHICLE

Fig. 9. Comparison of battery SOC profiles for different values of the Pareto
coefficient α over the Vail2NREL cycle.

Fig. 10. Comparison of the battery energy throughput (charge in orange and
discharge in blue) for different values of the Pareto coefficient α.

B. Solution to Changing Pareto Coefficient 501

By reducing the value of the Pareto coefficient α in (16) 502

we give more importance to the mitigation of the capacity 503

degradation of the battery, penalizing the fuel consumption 504

minimization. 505

In Fig. 9 we show the SOC profiles at different values of the 506

Pareto coefficient: the SOC trends look similar for α ≥ 0.5, but 507

its average value gets smaller and smaller. For values of the 508

Pareto coefficient close to zero the SOC remains approximately 509

constant around its initial value, because almost no energy is 510

delivered by the battery, nor stored into it as depicted in Fig. 10; 511

this means that the electric branch of the hybrid powertrain is 512

not used to preserve the heath of the battery. This is of course an 513

unwanted behavior, because it does not bring any advantage to 514

the fuel savings performance; to this end we must select higher 515

values of α, in particular, for this powertrain configuration, we 516

choose α ≥ 0.5. 517

We reported in Table IV the fuel savings for the four driving 518

cycles and for different values of the Pareto coefficient. The 519

values in Table IV represent the reduction (in percentage) of the 520

fuel consumed over each driving cycle compared to the ICE-only 521

architecture. As expected, almost no fuel saving improvement 522
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TABLE IV
FUEL SAVINGS COMPARISON FOR DIFFERENT VALUES OF THE PARETO

COEFFICIENT α. SAVINGS ARE REFERRED TO THE FUEL CONSUMPTION WITH

ONLY ICE

TABLE V
REDUCTION OF THE CAPACITY DEGRADATION FOR α < 1. THE EXACT

FORMULA TO COMPUTE THE PERCENTAGE VALUES IN THE TABLE IS

(1 −Qloss(α)/Qloss(α = 1))× 100

is achieved, compared to the ICE only, for values of α close to523

zero; meanwhile, for α ≥ 0.5 similar fuel reduction values are524

obtained. This result is justified by inspecting the total energy525

throughput of the battery in Fig. 10, that is almost identical for526

the solutions with α ≥ 0.5, despite the different average states527

of charge.528

Although fuel savings remain approximately the same for529

values of the Pareto coefficient greater than 0.5, on the other hand530

a significant decrease of the battery deterioration is obtained, as531

shown in Table V, where the percentage reduction in capacity532

degradation w.r.t. the case with α = 1 is reported. This case533

corresponds to solving the optimization problem (16) without534

the degradation cost, which in turn correspond to the worst case535

scenario as far as battery aging goes. For α = 0.2 we simulate536

a negligible deterioration of the battery capacity, due to the537

battery inactivity during the driving cycle. For intermediate val-538

ues of the Pareto coefficient, namely 0.5 ≤ α ≤ 0.8, we found539

a meaningful reduction of the battery deterioration. This is a540

remarkable result, since we can slow down battery aging without541

significantly affecting the fuel savings capabilities of the electric542

hybrid powertrain; indeed, the control strategy computed with543

α = 0.5 in the WLTC driving cycle, allows to obtain almost the544

same fuel reduction performance while reducing the aging rate545

by 27%.546

The motivation of these results can be found in the degra-547

dation model (15): first, lower SOC leads to higher values of548

the open circuit anode-potential Un(·), slowing down the SEI549

layer growth; second and most important, the SOC-weighted550

energy throughput — i.e. the last term of (15) — is considerably551

reduced for lower values of the Pareto coefficient as shown in552

Fig. 11, leading to a much slower degradation associated to the553

charge/discharge cycles of the battery.554

In the following we show how the operating temperature of555

the battery affects both the fuel savings performance and the556

battery degradation rate.557

Fig. 11. Comparison of the SOC-weighted current throughput for different
values of the Pareto coefficient α.

Fig. 12. Pareto curves for the four concatenated driving cycles, with the
leftmost points corresponding to higher values of α.

C. Solution to Changing Temperature 558

We have seen in Section II-D that the temperature accelerates 559

the kinetics of the side reactions that lead to capacity loss and 560

impedance increase, reducing the life span of the battery pack. 561

On the other side, too cold temperatures slow down the diffusion 562

reactions with a consequent increase of the battery impedance, 563

having a detrimental effect on the overall efficiency. 564

The cooling system of a battery pack is designed to prevent the 565

battery temperature from reaching too high values, in order to 566

extend the battery life and to avoid unsafe operating conditions 567

(e.g. thermal runaway). The cooling system activates when the 568

temperature of the battery exceeds a certain threshold, that 569

is selected according to a compromise between performance 570

optimization and battery life. In the following we show how such 571

threshold, together with the selection of the Pareto coefficient, 572

influences the optimization results. 573

The Pareto curves of Fig. 12 have been drawn by simulating 574

the capacity loss and the fuel consumption for different values 575

of the Pareto coefficient changing the temperature and concate- 576

nating the four driving cycles (WLTC, Vail2Nrel, US06 and 577

NEDC). The Pareto coefficients being equal, there is a clear 578

reduction of the capacity loss at lower temperatures, due to the 579
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TABLE VI
LIST OF PARAMETERS OF THE GR/NMC 2.0AH 3.7 V CELL

Arrhenius-like equations governing the side-reaction kinetics. It580

is interesting to notice that in the leftmost part of the plot, i.e. for581

higher values of α, a small reduction of the Pareto coefficient582

leads to a remarkable decrease of the capacity loss together with583

minor changes of the fuel consumption; this is an important584

outcome of our work, that proves that we can use control585

strategies that aim at preserving the battery life without affecting586

the fuel savings capability of the electric hybrid powertrain.587

The fuel-saving performance degradation at lower tempera-588

tures are more visible in the left-most part of the plot, where589

we notice a slight variation of the fuel consumption at different 590

temperatures. For the driving cycles studied in this work, these 591

variations are almost negligible due to the fact the the battery 592

operates far from the imposed constraints on voltage and surface 593

concentration; more severe cycles, or a smaller battery, could 594

result in a greater relevance of the operating temperature on the 595

fuel savings performance. 596

V. CONCLUSION 597

In this paper, we presented a battery health-aware energy 598

management strategy for a parallel HEV powertrain, based 599

on an accurate model of the vehicle powertrain and of the 600

battery charge/discharge dynamics and aging mechanisms. We 601

have shown that the proposed strategy can prolong the battery 602

lifespan up to 18% for some driving cycles, keeping the fuel 603

savings performance substantially unaltered. We have seen that 604

the degradation rate of the battery is slower at lower temper- 605

atures, meaning that a good cooling system is of paramount 606

importance in preserving the battery health. Yet, the cooling 607

system drains power from the battery, affecting the overall fuel 608

efficiency performance; this has not been taken into account in 609

this work and it will be the subject of future investigations. The 610

results proposed in this study are obtained computing off-line the 611

solution of the optimal control problem on several driving cycles 612

and could serve as a benchmark to assess the performance of 613

on-line control algorithms. Future development of this research 614

will focus on the application of the presented approach in the 615

framework of non-linear model predictive control, in order to 616

devise on-line energy management strategies based on accurate 617

models of the powertrain components. 618

APPENDIX A 619

The value of the electrochemical battery parameters are 620

reported in Table VI. 621
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