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Abstract

This study investigates the use of machine learning 
methods for the selection of energy storage devices in 
military electrified vehicles. Powertrain electrification 

relies on proper selection of energy storage devices, in terms 
of chemistry, size, energy density, and power density, etc. 
Military vehicles largely vary in terms of weight, acceleration 
requirements, operating road environment, mission, etc.

This study aims to assist the energy storage device selec-
tion for military vehicles using the data-drive approach. 
We use Machine Learning models to extract relationships 

between vehicle characteristics and requirements and the 
corresponding energy storage devices.

After the training, the machine learning models can 
predict the ideal energy storage devices given the target vehicles 
design parameters as inputs. The predicted ideal energy storage 
devices can be treated as the initial design and modifications 
to that are made based on the validation results. In the training 
phase, 80% of vehicle’s data borrowed from the literature were 
used, and the remaining 20% was used for validation. Results 
obtained from the proposed design predict the battery size and 
peak power with mean errors of 3.14% and 8.17%, respectively.

Introduction

Energy security and high fuel cost (up to $100/L [1]) have 
motivated the ongoing research on powertrain elec-
trification of military vehicles. Low noise and low 

thermal signature are benefits that come with electrification 
which are highly desirable in military missions [1].

Numerous are the energy storage systems (ESS) available, 
which differ from chemistry, size, weight, peak power, cost, 

and safety features. At the same time, vehicle specifications 
can vary significantly based on the application, mission, usage 
(Fig. 1) resulting in different vehicle mass, acceleration time, 
range, top speed, and so forth. Selecting the most appropriate 
ESS for a specific class of vehicles is a challenging problem. 
This is addressed in this paper.

In literature, ESS selection and design were mostly 
conducted using physics-based powertrain models to satisfy 

 FIGURE 1  Military vehicle weight range.
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vehicle power/ energy demands. The ESS selection problem was 
formulated as a multi-objective optimization problem by consid-
ering ESS weight, cost, and system health [2]. Genetic algorithm 
was utilized to solve the multi-objective problem and vehicle 
powertrain model was built based on physical constraints. ESS 
sizing of a fuel cell HEV was studied in [3]. Both power and 
energy requirement as well as aging were included in the design. 
Fuel cell, ultracapacitor, DC/DC converter, electric motor, 
inverter models and energy management strategies were built 
and used in the ESS sizing. The size of ultracapacitor was deter-
mined by fulfilling the transient peak power and the size of fuel 
cell was determined by fulfilling the slower load powers [4]. The 
size of ESS is calculated by matching the power and energy 
demand using iterative numerical method in [5]. ESS sizing of 
a fast charging station for Plug-in HEV was studied in [6].

In [7] high fidelity vehicle military model is used to opti-
mally select the ESS as a standalone system or hybrid configu-
ration (battery plus supercapacitors). Using simplified vehicle 
models with low accuracy may lead to not very accurate and 
misleading ESS selection results, on the other hand, using 
high fidelity vehicle models carries high development costs 
along with high computational requirements.

All the vehicle component models need experimental 
data to calibrate the parameters. Moreover, the model accuracy 
varies by component based on the complexity of the physics 
underlying the operation of the component. For example, 
transmission models have high accuracy [8] thanks to the 
simplicity of the gear shift physics, whereas the battery model 
accuracy could suffer [9] from the complex electrochemical 
reaction occurring during the charging and discharging [10].

Even though commercial powertrain modeling software 
like Autonomie modularizes the component models [7], which 
can be  integrated into different powertrain architectures, 
migrating component models from one vehicle to another is 
a challenging task. If the powertrain architecture is the same 
between two vehicles, the components will still require to 
be re-calibrated for the new vehicle. If the powertrain archi-
tecture is different, modification to the architecture is neces-
sary prior the component models re-calibration.

In this paper, we want to use the existing vehicle - ESS 
pairs already used/implemented in production vehicles as a 
database for our machine learning (ML) models. Such a 
database will serve as a platform from which the ML tech-
niques can learn the relationship between the vehicle and ESS. 
ML has been successfully implemented in relationship 
modeling between products manufacturing process and 
products failure [20], between heat source condition and 
dynamic programming optimized actuator position [21], 
between malware features and type of malware [22].

The existing ESS selections used for HEVs and EVs are 
used in the ML algorithm. We use an approach similar to the 
one used in [11] for the new drug design, where the ML learn 
from old drug database and design new drug for given 
requirements [11].

Moreover, the data used in this work are from in produc-
tion vehicles, which consider not only the power/energy 
demand, but also all kinds of realistic problems in production, 
such as cost, safety, durability, weight, aging, geometry. These 
factors are hardly considered in the aforementioned ESS 
selection literature.

In this paper, we use the enhanced Ragone plot (eRP) shown 
in Fig. 2 to assist the ESS selection algorithm. Compared with 
the traditional Ragone plot in Fig. 3, the eRP carries information 
about chemistry, temperature and C-rate of different energy 
storage which can provide valuable insights for the ESS selection.

The approach used in this study is summarized as follows:

 1. A database is built based on the existing EV-ESS pairs 
available on in production vehicles.

 2. To address the problem of limited available EV-ESS pairs 
data, a simulation tool built in [12] is used to generate 
“synthetic data” for two classes of military vehicles, 
namely the tracked combat vehicle (weight: 100 klb) and 
unmanned infantry vehicle (weight: 3500 lb).

 3. Four ML models are implemented to explore the 
relationship between the vehicle characteristics and 
ESS characteristics.

 4. Feature importance is determined by ML models to 
assist the understanding of the relation between 
vehicle design requirements (e.g., acceleration time, 
weight, top speed, and range) and ESS characteristics 
(e.g., peak power and battery size).

 5. The trained ML models are then used in the ESS 
selection to predict the ESS for a given 
vehicle characteristic.

 FIGURE 2  Enhanced Ragone plot [12].
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 FIGURE 3  Ragone plot [13]. SuperCap: supercapacitor; Pb: 
lead; Li-ion: lithium-ion; NiCd: nickel-cadmium; NiMH: nickel-
metal hydride; NaNiCl2: sodium-nickel chloride; ZEBRA: Zero 
Emission Battery Research Activities.
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The rest of paper is organized as follows: The dataset explo-
ration section explains the dataset. Basic preprocess is 
conducted to uncover some of characteristics in the dataset. 
After that, the problem formulation is presented to standardize 
the integration of machine learning models and ESS selection. 
The results of the model training and prediction process are 
presented in results section, where different machine learning 
models are compared. Finally, the study ends with conclusion.

Machine Learning Models
Machine Learning shines in the complex system modeling 
tools where conventional modeling methods are time-
consuming or have low accuracy (e.g., image processing [14], 
language translation [15], voice recognition [16], robotics [17]). 
However, ML models lack physical insights and have poor 
performance on unseen scenarios, such as extrapolation. In 
this study, four ML algorithms are explored. Those are:

Linear Regression: this is a linear approach to model the 
relationship between one dependent variable and one or more 
independent variables. The relationships are often fitted using 
the least squares approach.

Random Forest Regression: this is an ensemble learning 
method for regression that operates by constructing a multitude 
of decision trees at training time and outputting the mean 

prediction of the individual trees. By outputting the mean predic-
tion, it reduces the overfitting probability of the decision trees.

Bagging Regression: this is a machine learning ensemble 
meta-algorithm designed to improve the stability and accuracy 
of machine learning algorithms used in regression. It also 
reduces variance and overfitting.

Neural Network Regression: It is based on a collection 
of connected units (artificial neurons), which is inspired by 
the brain biological structure. It has different layers of neurons 
and neurons are inter-connected layer by layer. The informa-
tion is transported through the neurons by different weights, 
bias and activation functions.

Dataset Exploration
Dataset plays a vital role in the machine leaning methods. In this 
work, the history data from ESS and EVs is collected and 
combined into a dataset. Most of the vehicles studied are commer-
cial vehicles that are available on the market and a few military 
vehicles are included for the methodology concept proof.

The dataset is described in Table 1. The vehicle charac-
teristic parameters include weight, electric range, acceleration 
time, top speed and energy consumption per mile. The battery 
characteristic parameters include peak power and battery size 
(chemistry may be added later here).

TABLE 1 Dataset of EV vehicle and ESS characteristics.

Vehicle name Weight Range
Acceleration 
time Top speed

Energy 
consumption Peak power Battery size

lb mi s mph Wh/mi kW kWh
e-tron 5490 204 5.5 124 455 300 95

i3 2965 153 7.2 93 298 125 42.2

i3s 3034 153 6.8 100 298 135 42.2

Bolt EV 3580 238 6.5 90 283 150 60

500e 2980 84 8.9 85 301 83 24

Clarity Electric 4024 89 12 95 296 120 25.5

IONIQ Electric 3164 124 9.9 102 248 88 28

Kona Electric 3715 258 7.6 104 281 150 64

l-PACE 4784 234 4.5 124 443 294 90

Niro EV 3854 239 7.8 104 301 150 64

Soul EV 4806 243 7.6 90 296 150 64

LEAF 3433 150 7.4 104 301 110 40

LEAF e+S 3780 226 6.5 100 312 160 62

LEAF e+SV/SL 3811 215 6.5 100 324 160 62

EQ fortwo Coupe 2363 58 11.4 81 312 60 17.6

EQ fortwo Cabrio 2383 57 11.7 81 330 60 17.6

Model 3 Standard Range 3627 220 5.6 130 257 211 59.5

Model 3 Standard Range Plus 3627 240 5.3 140 253 211 59.5

Model 3 Long Range AWD 4072 310 4.5 145 291 307 80.5

Model 3 Performance LR AWD 4072 310 3.2 162 291 353 80.5

Model S Long Range 4883 370 3.7 155 304 311 100

Model S Performance LM 4941 345 2.4 163 324 451 100

Model X Long Range 5421 325 4.4 155 351 386 100

Model X Performance LM 5531 305 2.7 163 351 568 100

e-Golf 3455 125 9.6 93 283 100 35.8©
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To expand the dataset to include military vehicles, a 
vehicle simulation tool in is used [7]. The simulation tool 
designs the peak power and battery size for the military vehicle 
given the vehicle characteristics. The input and output of the 
simulation tool are shown in Fig. 4.

The vehicle requirements are the simulation inputs and 
the battery related parameters (energy consumption, peak 
power and battery size) are the simulation output.

PCA Analysis
Principle component analysis is a method to analyze the varia-
tion of a dataset to avoid feature repetition and reduce data 
dimension [18]. In this study, weight, range, acceleration time, 
top speed and energy consumption data are fed into the PCA 
algorithm. The PCA results are shown in Fig. 5. The first three 
principle components dominate and have the largest data varia-
tion (99.57%). As the dataset capacity increases to the level of 
Gigabytes (or larger), the PCA will reduce the data dimension 
and save significant amount of computation time and computa-
tion memory. However, in this study, the dataset is less than 
one Megabyte and thus, all the features are kept in the machine 
learning model training for the accuracy improvement.

Feature Importance
The contribution of each feature to the prediction accuracy is 
indicated by feature importance. In other words, the feature 
importance indicates the connection between the target and 
the features. Higher feature importance values indicate closer 
connection and vice versa. Feature importance is calculated by 
comparing the error increase of different cases that the 

corresponding feature sample values are randomly permuted 
among all the samples [19]. The random forest method is used 
here to conduct the feature importance analysis. The results of 
battery peak power feature importance are shown in Fig. 6 that 
shows that the acceleration time design requirement largely 
impacts the peak power selection. During the acceleration test, 
vehicles generally operate in full throttle and electric motor 
peak power at the later phase of acceleration. The results of an 
acceleration test example are shown in Fig. 7. At the later phase 
of acceleration test, the vehicle hits the maximum speed as the 

 FIGURE 4  The inputs and outputs to the vehicle simulation 
tool from [1] to select ESS for the two military vehicles. This 
action expands the dataset to the military vehicle.
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 FIGURE 5  PCA results of vehicle characteristics.
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 FIGURE 6  Feature importance ranking in the battery peak 
power prediction.
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 FIGURE 7  Electric motor torque and vehicle speed during 
an EV acceleration.
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EM power reaches its maximum value. When EM speed is 
under 350 rad/s, the EM torque is fixed at 400Nm and the EM 
output power keeps rising. However, when the EM speed hits 
350 rad/s, the EM reaches its maximum power and as the EM 
speed increases further, the maximum torque is compromised, 
which leads to the curve between the 350 rad/s and 750 rad/s 
in Fig. 7(a).

The larger the EM maximum power, the faster the vehicle 
accelerates, thus the shorter the acceleration time of 
the vehicle.

Therefore, the acceleration plays a vital role in the battery 
peak power prediction as shown in Fig. 6.

The results of battery size feature importance are shown 
in Fig. 8. It can be observed that the vehicle weight and accel-
eration time requirements dominate the impact on the battery 
size selection. The reason is that the vehicle rolling resistance 
is proportional to the vehicle weight. The heavier the vehicle, 
the higher the energy consumed. For a given battery chem-
istry, the power density is generally constant. The larger/ 
heavier the battery is, the more power the battery can output. 

As discussed in the previous paragraph, the acceleration time 
is an indicator of peak power. Thus, acceleration time largely 
impacts the battery size. Even though the range, the energy 
consumption and top speed are not as important as weight 
and acceleration time, they are not negligible. The combined 
feature importance of range, energy consumption and top 
speed accounts for 14%, thus they still make noticeable contri-
bution to the battery size prediction.

Problem Formulation
The machine learning model is built from an optimization 
problem. The variables are the model parameters and the opti-
mization goal is the model error minimization. The vehicle 
and ESS data are the input to the models and the models 
optimize their parameters to build a relation between the 
vehicle characteristics and ESS characteristics, such that for 
given vehicle characteristics, the models can accurately predict 
the ESS characteristics. The cost functions of the model are 
as follows:

 e P PP

i

N

bat data i bat ML ibat = -( )
=
å

1

2
, , , ,  (1)

 e C CC

i

N

bat data i bat ML ibat = -( )
=
å

1

2
, , , ,  (2)

where e is error, Pbat is battery peak power in the unit of [kW], 
Cbat is battery size in the unit of [kWh], N is the number of 
training data points. Battery peak power and battery size 
predictions are modeled separately. As shown in Fig. 9, the 
relationship between peak power and features is modelled by 
machine learning model 1. The relationship between battery 
size and features is modelled by machine learning model 2.

Results
In this section, results from the application of four machine 
learning algorithms are fully explored by first modifying the 

 FIGURE 8  Feature importance ranking in the battery 
size prediction.
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 FIGURE 9  Inputs and output (target) of the machine learning models.
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parameter setups. Then, the four algorithms are compared 
based on the training performance and the algorithm selec-
tion is conducted. The selected algorithms are used in the 
prediction process.

Training Performance
The parameter settings in the four machine learning algo-
rithms are searched using a grid search algorithm. The 
machine learning modeling process is implemented in Python 
and the models are from the sk-learn machine learning library. 
The type of parameters and the variation range are listed below:

 1. Linear Regression: parameter setup no necessary.
 2. Random Forest: The number of estimators varies (1, 2, 

3, 5, 7, 10, 15, 20, 30). Max depth varies (1, 2, 3, 5, 7, 10, 
15, 20, 30).

 3. Bagging: Number of estimators varies 
(1,2,3,5,10,20,30,50,100,200).

 4. Neural Networks: The number of neurons in each layer 
varies (1, 2, 3, 5, 7, 10, 15, 20, 30, 50, 100, 200, 500, 1000, 
2000) and the number of hidden layer varies (1, 2).

Note that the variation ranges are modified based on the 
trend of the results. Necessary range extensions are made to 
ensure the best parameter setup is covered in the range.

Linear Regression Results: The mean training error 
percentage from linear regression is 3.9% for the battery size 
and 20.7% for the battery peak power. The battery size error 
is much less than the battery peak power error. The training 
results of battery size and battery peak power are shown in 
Fig. 10 and Fig. 11, respectively. As shown in the upper left 
corner of Fig. 10, the maximum battery size error is only 
5.96 kWh and the training results match the dataset extremely 
well, especially for vehicle #21, i.e., the Tracked Combat 
Vehicle. The battery size of this vehicle is nearly ten times of 
the battery size from the rest of the vehicles. This indicates 
that the battery size is strongly linearly correlated with the 
vehicle characteristics. However, the Linear Regression algo-
rithm does not perform very well in the battery peak power 

training, as the mean error is 20.7%. The details of the error 
can be observed in Fig. 11. Even though the training peak 
power is around the dataset for the majority of vehicles, the 
gaps are obvious. Some vehicles exhibit significant training 
error, such as vehicle #18. Digging into the training dataset of 
vehicle #18, it is found out that this is Tesla Model X 
Performance LM (last second row of Table 1) and it has similar 
vehicle characteristic with Tesla Model S Performance LM 
(last fourth row of Table 1). Both Vehicles have similar weight 
and acceleration time. Tesla Model S Performance LM is 
vehicle #16 in Fig. 11. The model does a good job in the vehicle 
#16, whereas it substantially underestimates the peak power 
of vehicle #18. According to the importance ranking of battery 
peak power prediction in Fig. 6, vehicle acceleration time 
dominates and its importance is more than twice of the vehicle 
weight. Even though the weight of vehicle #18 is larger than 
the weight of vehicle #16 (5531 lb. vs 4941 lb.), the acceleration 
time is longer than vehicle #16 (2.7 s vs 2.4s). Due to accelera-
tion time is much more important in the peak power predic-
tion, the model predicts lower peak power for vehicle #18 than 
vehicle #16 (402 kW vs 423 kW) as shown in Fig. 11.

Random Forest Results: There are two varying parameters 
in the random forest algorithm parameter setup: number of 
estimators and max depth of the estimators. Fig. 12 and Fig. 13 
show the mean training error percentage results by varying 
these two setups in the operating range. Both the battery size 
and battery peak power training error have similar trend with 
respect to the variation of number of estimators and max tree 
depth, as the error are more sensitive to the max tree depth than 
the number of estimators. When the max tree depth is greater 
than 5, the error reaches its minimum level and does not show 
obvious drop as the max tree depth further increases. The 
minimum mean error percentage in the battery size training is 
9.34%, which is produced with 5 estimators and max tree depth 
at 7. For the battery peak power, the minimum mean error is 
16.09%, which occurs at 3 estimators and max tree depth at 7.

Bagging Results: The optimization results from the 
bagging algorithm are shown in Fig. 14 and Fig. 15. For the 
battery size in Fig. 14, the minimum training error occurs at 
3 estimators with 8.58% mean error percentage. When the 

 FIGURE 10  Battery size training results and dataset 
comparison. Linear Regression algorithm is used in 
the training.
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 FIGURE 11  Battery peak power training results and dataset 
comparison. Linear Regression algorithm is used in 
the training.
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number of estimators increases to 10, the mean training error 
percentages rises sharply and crosses 12%. For the battery 
peak power in Fig. 15, the minimum training error occurs at 
100 estimators with 16.96% mean error percentage. The 
minimum error occurs at large number of estimators.

Neural Networks: The battery size training results from 
the Neural Networks with single hidden layer and two hidden 
layers are shown in Fig. 16 and Fig. 17, respectively. When the 

 FIGURE 12  Battery size mean training error percentage 
with different parameter setups of Random Forest algorithm.
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 FIGURE 13  Battery peak power mean training error 
percentage with different parameter setups of Random 
Forest algorithm.
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 FIGURE 14  Battery size mean training error percentage 
with different number of estimators of bagging algorithm.
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 FIGURE 15  Battery peak power mean training error 
percentage with different number of estimators of 
bagging algorithm.
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 FIGURE 16  Battery size mean training error percentage 
with different number of neurons of Neural Network. Only 
single hidden layer is considered in the neural network.
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 FIGURE 17  Battery size mean training error percentage 
with different number of neurons of Neural Network. Two 
hidden layers are considered in the neural network.
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number of layers is fixed, the number of neurons in each layer 
are swept. In all four cases, the error change significantly at 
small number of neurons range (<20) and turns to stable at 
large number of neurons range (>20). This is because the 
simple structure of Neural Networks at small number of 
neurons is not able to fit the data. As the number of neurons 
increases, the model complexity rises and the curve fitting 
capability increases at the same time. Thus, the error fluctua-
tion is reduced. The peak power training results with single 
hidden layer and two hidden layers are shown in Fig. 18 and 
Fig. 19, respectively. As the hidden layer increases from one 
to two, the best battery size mean training error percentage 
slightly reduces from 5.6% (twenty neurons) to 5.5% (thirty 
neurons at hidden layer #1 and fifteen neurons at hidden layer 
#2) and the best battery peak power mean training error 
percentage slightly reduces from 24.6% (one neuron) to 24.1% 
(thirty neurons at hidden layer #1 and twenty neurons at 
hidden layer #2). These two error reductions are almost negli-
gible, thus one hidden layer is enough in this application.

The best training results from all four algorithms are 
summarized in Table 2. Among the four algorithms, the 
Linear Regression algorithm has the minimum error in the 
battery size training (3.93%) and Random Forest algorithm 
has the minimum error in the battery peak power training 
(16.09%). Thus, these two algorithms are selected for the next 
prediction section. The details of Linear Regression training 
results on battery size and Random Forest training results on 

battery power are shown in Fig. 20 and Fig. 21, respectively. 
In the training data, the first 20 vehicles (#0-#19) are passenger 
vehicles and the last two vehicles (#20 and #21) are military 
vehicles. Battery size training accuracy is high for both 
passenger vehicles and military vehicles as shown in Fig. 20, 
whereas the battery peak power training accuracy is relatively 
low for the two military vehicles as shown in Fig. 21. The peak 
power prediction model overestimates the peak power of 
vehicle #20 and underestimates the peak power of vehicle #21. 
This undesirable accuracy could result from the acceleration 
time difference of military vehicles and passenger vehicles. 
The feature importance analysis results show that the 

 FIGURE 18  Battery peak power mean training error 
percentage with different number of neurons of Neural Network. 
Only single hidden layer is considered in the neural network.
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 FIGURE 19  Battery peak power mean training error 
percentage with different number of neurons of Neural Network. 
Two hidden layers are considered in the neural network.
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TABLE 2 Best results in the algorithms parameter setups 
grid searches.

Linear 
Regression

Random 
Forest Bagging

Neural 
Networks

Battery size mean 
error percentage

3.93% 9.34% 5.58% 5.50%

Battery peak 
power mean error 
percentage

20.72% 16.28% 16.96% 24.10%
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 FIGURE 20  Battery size training performance using Linear 
Regression algorithm.
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 FIGURE 21  Battery peak power training performance using 
Random Forest algorithm.
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acceleration time dominates in the peak power prediction as 
shown in Fig. 6. According to

Table 1, the acceleration time range of all the passenger 
vehicles is 2.4s-12s, whereas the acceleration time of three 
military vehicles are all above 12s. Different from the feature 
importance ranking of peak power, the vehicle weight takes 
the lead in the feature importance ranking of battery size as 
shown in Fig. 8.

Prediction Performance
Different from the training process, which treats both vehicle 
characteristics and ESS characteristics as inputs, the prediction 
process only takes the vehicle characteristics as the inputs. 
ESS characteristics are the outputs of the prediction process. 
The outputs are compared with the value from the dataset. 
The prediction results of battery peak power by Random 
Forest algorithm and battery size by Linear Regression algo-
rithm are shown in Fig. 22. The mean prediction error 
percentage for both battery size and peak power is in the range 
of 3.14% - 8.17%, which is satisfactory and leaves some room 
for improvement. Maximum error percentage are large 
(25.73%) in both peak power and battery size prediction due 
to the small absolute values of data point #0. The absolute 
error in prediction vehicle #0 is 15.4kW, which is only one 
third of the max error (53.11kW vehicle #4) among the six 
vehicles. Similar to the peak power prediction, the maximum 
error and maximum error percentage of battery size predic-
tion occur at different vehicles. The large errors should 
be reduced if more data points are added in the respective 
vehicle classes. Among the six vehicles, vehicle #5 is Wheeled 
Tactical military vehicle and the rest five vehicles are passenger 
vehicles. The peak power and battery size prediction errors of 
vehicle #5 are 2.1% and 4.9%, respectively. The battery peak 
power prediction error 4.9% is less than the training errors of 
the military vehicles #20 and #21 in Fig. 21. The small error 
in the Wheeled Tactical military vehicle ESS peak power 
prediction could be the result of good interpolation perfor-
mance. Interpolation occurs when the target value is between 

the higher and lower boundaries of the table values in the 
table lookup process. In the ESS selection process, the lookup 
table contains the information of Unmanned Infantry Vehicle 
and Tracked Combat military vehicle. Due to the large differ-
ence of the vehicle weight between these two military vehicles 
shown in Fig. 4, they create a large gap for other military 
vehicles to interpolate in the table. The parameters of the 
Wheel Tactical military vehicle are between the parameters 
of Unmanned Infantry Vehicle and Tracked Combat military 
vehicle as shown in Fig. 4. Therefore, the small error in the 
Wheeled Tactical military vehicle ESS prediction could be the 
results of interpolation. This observation indicates that in 
order to achieve excellent prediction accuracy, training dataset 
should cover the data range in the prediction data. In other 
words, the prediction should be  by interpolation rather 
than extrapolation.

Connection to the Enhanced 
Ragone Plot
In order to connect the vehicle characteristics and require-
ments to the ESS capabilities, the predicted vehicle PE-ratio 
is plotted as a straight line on the enhanced Ragone plot. The 
PE-ratio calculation using the machine learning predicted 
peak power and battery capacity is presented in the 
following equation:

 PE
P kW

E kWh

P W kg

E Wh kg
pred

pred

pred

pred

pred

=
( )

( )
=

( )
( )

, ,

,

/

/
max r

r
 (3)

where PEpred is the predicted Power to Energy Ratio of vehicle, 
Ppred,max is the maximum predicted power, Epred is the predicted 
vehicle energy to get the designed range, Pρ,req is the predicted 
specific power, Eρ,req is the predicted specific energy.

Three vehicles (Tesla model 3 performance version, 
Nissan Leaf and Wheeled Tactical Military vehicle) are plotted 
in the enhanced Ragone plot based on their predicted 
PE-ratios. Feasible solutions can be found in the enhanced 

 FIGURE 22  Peak power and battery size prediction performance.

©
 S

A
E 

In
te

rn
at

io
na

l.

Downloaded from SAE International by The Library, Friday, May 15, 2020



MACHINE LEARNING BASED OPTIMAL ENERGY STORAGE DEVICES SELECTION ASSISTANCE FOR VEHICLE PROPULSION 10

Ragone plot for both vehicles and different ESS chemistry can 
be selected.

In the ESS design process, the vehicle design require-
ments are converted to the predicted peak power and battery 
size via trained Machine Learning models. The peak power 
and battery size are then converted to PE ratio and integrated 
in the enhanced Ragone plot for ESS selection. The Machine 
Learning models developed in this study only find the 
predicted PE ratio and assist the ESS selection rather than 
conduct the entire ESS selection. The results of Machine 
Learning can be regarded as the optimized initial design of 
the ESS rather than the final design. In the future, as more 
information about the vehicle characteristics and ESS char-
acteristics are added in the dataset, more functionality the 
Machine Learning will have, such as ESS chemistry selection, 
hybrid ESS design.

Limitation
Even though the preliminary results show moderate model 
accuracy, there are two limitations that needs to be considered 
in the ML-based ESS selection method development: (i) the 
difference between military vehicles and commercial vehicles, 
and (ii) the database size. Military vehicles and commercial 
vehicles have different objectives. For military vehicles, func-
tionality is more important over fuel economy and cost. 
Military vehicles are heavier and have poor fuel economy. For 
commercial vehicles, fuel economy, cost, and even appearance 
are important features. They do no need to run in extreme 
environments (e.g., high temperature and extreme bumpy 
road). These different characteristics between military 
vehicles and commercial vehicles result in different design 
targets. Therefore, in the database collection phase, these 
differences need to be considered. The database size is also 
important for a ML model. In general, the more data, the 
better accuracy the ML model can achieve. However, this 
does not mean the ML model cannot be used in case a small 
data set is available. As long as data set is representative, the 
ML model can still achieve acceptable accuracy. If possible, 
the designer should collect as much data as possible in the 
database construction phase.

Conclusion
This study conducts the ESS selection with the help of Machine 
Learning methods. It takes the advantage of existing dataset 
collected from the electric vehicle on the market and signifi-
cantly reduces the total amount of effort in the ESS selection 
compared with traditional physics-based ESS selection. The 
results are also encouraging. Here are the conclusions drawn 
from the analysis of this study:

 1. Machine Learning models can extract the 
relationship between vehicle characteristics and ESS 
characteristics and make acceptable predictions 
(mean accuracy 3.14-8.17%) on the battery size/ peak 
power given the vehicle characteristics.

 2. Vehicle acceleration time requirements show the 
largest impact on the peak power selection of 
the ESS.

 3. Both vehicle weight and acceleration time dominate 
the impact on the battery size selection.

 4. In the ESS design process, the vehicle design 
requirements are converted to the predicted peak 
power and battery size via trained Machine Learning 
models. The peak power and battery size are then 
converted to PE ratio and integrated in the enhanced 
Ragone plot for ESS selection.

Even though the ESS characteristics prediction accuracy 
is moderate, the results are still preliminary and there is room 
to improve ESS selection methodology in the future: (i) the 
maximum battery peak power prediction error is as large as 
25.73%, thus the robustness of the machine learning method 
needs improvement; (ii) the dataset are based on the data 
related to available on the market EVs and their corresponding 
ESSs. Thus, the fast-changing vehicle and battery technology 
advancement should be considered in the dataset to increase 
the representativeness of the data; (iii) the model performance 
based on different size of dataset will also be considered in 
future study.

References
 1. Kramer, D.M. and Parker, G.G., “Current State of Military 

Hybrid Vehicle Development,” Army Tank Automotive 
Research Development and Engineering Center, Warren, 
MI, 2011.

 2. Zhang, L., Hu, X., Wang, Z., Sun, F. et al., “Multiobjective 
Optimal Sizing of Hybrid Energy Storage System for Electric 
Vehicles,” IEEE Transactions on Vehicular Technology 
67:1027-1035, 2018.

 3. Schaltz, E., Khaligh, A., and Rasmussen, P.O., “Influence of 
Battery/Ultracapacitor Energy-Storage Sizing on Battery 
Lifetime in a Fuel Cell Hybrid Electric Vehicle,” IEEE 
Transactions on Vehicular Technology 58:3882-3891, 2009.

 4. Schaltz, E. and Rasmussen, P.O., “Design and Comparison of 
Power Systems for a Fuel Cell Hybrid Electric Vehicle,” in 
2008 IEEE Industry Applications Society Annual Meeting, 
2008, 1-8.

 FIGURE 23  The predicted PE ratio is plotted on the 
enhanced Ragone plot to connect the vehicle design 
requirement and the ESS characteristics.

©
 S

A
E 

In
te

rn
at

io
na

l.

Downloaded from SAE International by The Library, Friday, May 15, 2020



© 2020 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies 
solely with the author(s).

ISSN 0148-7191

 11MACHINE LEARNING BASED OPTIMAL ENERGY STORAGE DEVICES SELECTION ASSISTANCE FOR VEHICLE PROPULSION

 5. Douglas, H. and Pillay, P., “Sizing Ultracapacitors for Hybrid 
Electric Vehicles,” in 31st Annual Conference of IEEE 
Industrial Electronics Society, 2005 (IECON 2005), 2005, 6.

 6. Negarestani, S., Fotuhi-Firuzabad, M., Rastegar, M., 
andRajabi-Ghahnavieh, A., “Optimal Sizing of Storage 
System in a Fast Charging Station for Plug-In Hybrid Electric 
Vehicles,” IEEE Transactions on Transportation 
Electrification 2:443-453, 2016.

 7. Mamun, A., Liu, Z., Rizzo, D., and Onori, S., “An Integrated 
Design and Control Optimization Framework for Hybrid 
Military Vehicle Using Lithium-Ion and Supercapacitor,” 
IEEE Transactions on Transportation Electrification 
5(1):239-251, 2019.

 8. Rahman, M.L.H.A., Hudha, K., Kadir, Z.A., Amer, N.H. 
et al., “Modelling and Validation of a Novel Continuously 
Variable Transmission System Using Slider Crank 
Mechanism,” International Journal of Engineering Systems 
Modelling and Simulation 10:49-61, 2018.

 9. Arunachalam, H. and Onori, S., “Full Homogenized 
Macroscale Model and Pseudo-2-Dimensional Model for 
Lithium-Ion Battery Dynamics: Comparative Analysis, 
Experimental Verification and Sensitivity Analysis,” Journal 
of The Electrochemical Society 6(8):1380-1392, 2019.

 10. Hannan, M.A., Lipu, M.H., Hussain, A., and Mohamed, A., 
“A review of Lithium-Ion Battery State of Charge Estimation 
and Management System in Electric Vehicle Applications: 
Challenges and Recommendations,” Renewable and 
Sustainable Energy Reviews 78:834-854, 2017.

 11. Burbidge, R., Trotter, M., Buxton, B., and Holden, S., “Drug 
Design by Machine Learning: Support Vector Machines for 
Pharmaceutical Data Analysis,” Computers & Chemistry 
26:5-14, 2001.

 12. Catenaro, E., Rizzo, D., and Onori, S., “Eperimental Analysis 
and Analytical Modeling of an Enhanced Ragone Plot,” 
Environmental Science and Technology, in preparation, 2020.

 13. Budde-Meiwes, H., Drillkens, J., Lunz, B., Muennix, J. et al., 
“A Review of Current Automotive Battery Technology and 

Future Prospects,” Proceedings of the Institution of 
Mechanical Engineers, Part D: Journal of Automobile 
Engineering 227:761-776, 2013.

 14. He, K., Zhang, X., Ren, S., and Sun, J., “Delving Deep into 
Rectifiers: Surpassing Human-Level Performance on 
Imagenet Classification, ” in Proceedings of the IEEE 
International Conference on Computer Vision, 2015, 
1026-1034.

 15. Young, T., Hazarika, D., Poria, S., and Cambria, E., “Recent 
Trends in Deep Learning Based Natural Language 
Processing, ” IEEE Computational Intelligence Magazine 
13:55-75, 2018.

 16. Fang, S.-H., Tsao, Y., Hsiao, M.-J., Chen, J.-Y. et al., 
“Detection of Pathological Voice Using Cepstrum Vectors: A 
Deep Learning Approach, ” Journal of Voice, 2018.

 17. Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R. et al., 
“The Limits and Potentials of Deep Learning for Robotics, ” 
The International Journal of Robotics Research 37:405-
420, 2018.

 18. Wold, S., Esbensen, K., and Geladi, P., “Principal Component 
Analysis, ” Chemometrics and Intelligent Laboratory Systems 
2:37-52, 1987.

 19. Breiman, L., “Random Forests, ” Machine Learning 
45:5-32, 2001.

 20. Zhang, D., Xu, B., and Wood, J., “Predict Failures in 
Production Lines: A Two-Stage Approach with Clustering 
and Supervised Learning, ” in IEEE International Conference 
on Big Data, 2016, 2070-2074.

 21. Xu, B., Rathod, D., Yebi, A., and Filipi, Z., “Real-Time 
Realization of Dynamic Programming Using Machine 
Learning Methods for IC Engine Waste Heat Recovery 
System Power Optimization, ” Applied Energy 
262:114514, 2020.

 22. Xu, B., Zhang, D., and Tang, S., “Malware Classification 
Utilizing Supervised Learning in Autonomous Driving 
Applications, ” in SAE - 19th Asian Pacific Automotive 
Engineering Conference, Shanghai, China, 2017.

Downloaded from SAE International by The Library, Friday, May 15, 2020


	10.4271/2020-01-0748: Abstract
	Introduction
	Machine Learning Models
	Dataset Exploration
	PCA Analysis
	Feature Importance

	Problem Formulation
	Results
	Training Performance
	Prediction Performance
	Connection to the Enhanced Ragone Plot
	Limitation

	Conclusion

	References

